精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=|x+1|+2|x-1|
(Ⅰ)求不等式f(x)≥x+3的解集;
(Ⅱ)若关于x的不等式f(x)≥loga(x+1)在x≥0上恒成立,求a的取值范围.

分析 (Ⅰ)把要解的不等式转化为与之等价的三个不等式组,分别求得每个不等式组的解集,再取并集,即得所求.
(Ⅱ)当0<a<1时,在(0,+∞)上,不等式显然成立;当a>1时,结合f(x)、g(x)的图象,可得当g(x)的图象经过点(1,2)时,a=$\sqrt{2}$,要使不等式f(x)≥g(x)=loga(x+1)恒成立,a≥$\sqrt{2}$,综合可得,a的取值范围.

解答 解:(Ⅰ)由于函数f(x)=|x+1|+2|x-1|,不等式f(x)≥x+3,即|x+1|+2|x-1|≥x+3,
即 $\left\{\begin{array}{l}{x<-1}\\{-x-1+2(1-x)≥x+3}\end{array}\right.$ ①,或$\left\{\begin{array}{l}{-1≤x<1}\\{x+1+2(1-x)≥x+3}\end{array}\right.$ ②,或$\left\{\begin{array}{l}{x≥1}\\{x+1+2(x-1)≥x+3}\end{array}\right.$③.
解①求得x<-1,解②求得-1≤x≤0,解③求得 x≥2,
故原不等式的解集为{x|x≤0,或x≥2}.
(Ⅱ)若关于x的不等式f(x)≥loga(x+1)在x≥0上恒成立,即|x+1|+2|x-1|≥loga(x+1)在x≥0上恒成立.
由于g(x)=loga(x+1)的图象经过点(0,0),且图象位于直线x=-1的右侧,
当0<a<1时,在(0,+∞)上,loga(x+1)<0,f(x)>0,不等式f(x)≥g(x)=loga(x+1)恒成立.
当a>1时,结合f(x)=$\left\{\begin{array}{l}{1-3x,x<-1}\\{3-x,-1≤x<1}\\{3x-1,x≥1}\end{array}\right.$、g(x)的图象,
当g(x)的图象经过点(1,2)时,a=$\sqrt{2}$,要使不等式f(x)≥g(x)=loga(x+1)恒成立,a≥$\sqrt{2}$,
综上可得,a的取值范围为(0,1)∪[2,+∞).

点评 本题主要考查绝对值不等式的解法,函数的恒成立问题,体现了数形结合、分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.直角坐标系中曲线C的参数方程为$\left\{{\begin{array}{l}{x=4cosθ}\\{y=3sinθ}\end{array}}\right.$(θ为参数).
(1)求曲线C的直角坐标方程;
(2)经过点M(2,2)作直线l交曲线C于A,B两点,若M恰好为线段AB的中点,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合M={x|x<-3或x>5},P={x|(x-a)(x-8)≤0}
(1)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的充要条件;
(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件;
(3)求实数a的取值范围,使它成为M∩P={x|5<x≤8}的一个必要但不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,AB是圆O的直径,CD是弦,CD⊥AB于点E,
(1)求证:△ACE∽△CBE;
(2)若AB=4,设OE=x(0<x<2),CE=y,请求出y关于x的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,AB是圆O的一条切线,切点为B,AF、AD都是圆O的割线,AD交圆O于点C,AF交圆O于点E,且∠ABC=∠ECF,连接EC、FB,BF过圆心O.
(I)证明:∠CBF=∠EFB;
(Ⅱ)已知AB=5,AC=4,BD=OB=2,求CF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f (x)=2sinxcos2$\frac{φ}{2}$+cosxsinφ-sinx(0<φ<π) 在x=π处取最小值.
(1)求φ的值;
(2)若f(2x+$\frac{π}{3}$)=m在[0,π]有两个解x1,x2,求m的取值范围,并求相应的x1+x2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=2ax-$\frac{1}{x^2}$,x∈(0,1].若函数f(x)在(0,1]上是增函数,则实数a的取值范围是a≥-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=lnx-$\frac{1}{2}a{x^2}$-2x,其中a≤0
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线方程为y=2x+b,求a-2b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知极坐标系的极点O与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为$\left\{\begin{array}{l}x=a+acosθ\\ y=asinθ\end{array}$(θ为参数,0<a<5),直线l:ρsin(θ+$\frac{π}{4}$)=2$\sqrt{2}$,若直线l与曲线C相交于A,B两点,且|AB|=2$\sqrt{2}$.
(Ⅰ)求a;
(Ⅱ)若M,N为曲线C上的两点,且∠MON=$\frac{π}{3}$,求|OM|+|ON|的最小值.

查看答案和解析>>

同步练习册答案