精英家教网 > 高中数学 > 题目详情
已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-2,0),F2(2,0),点A(2,3)在椭圆C1上,过点A的直线L与抛物线C2:x2=4y交于B,C两点,抛物线C2在点B,C处的切线分别为l1,l2,且l1与l2交于点P.
(1)求椭圆C1的方程;
(2)是否存在满足|PF1|+|PF2|=|AF1|+|AF2|的点P?若存在,指出这样的点P有几个(不必求出点P的坐标);若不存在,说明理由.
(1)+=1  (2)存在,有2个

解:(1)设椭圆方程为+=1(a>b>0),
由题意可知2a=+=8.
∴a=4,b2=a2-c2=12.
∴椭圆方程为+=1.
(2)设B(x1,),C(x2,),
直线BC的斜率为k,则k=.
由y=x2,得y′=x.
∴点B、C处的切线l1、l2的斜率分别为x1,x2,
∴l1的方程为y-=x1(x-x1),
即y=x1x-,
同理,l2的方程为y=x2x-.

解得
∴P(2k,2k-3).
∵|PF1|+|PF2|=|AF1|+|AF2|,
∴点P在椭圆C1:+=1上,
+=1.
化简得7k2-12k-3=0.(*)
由Δ=122-4×7×(-3)=228>0,
可得方程(*)有两个不等的实数根.
∴满足条件的点P有两个.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知点D(0,-2),过点D作抛物线的切线l,切点A在第二象限。

(1)求切点A的纵坐标;
(2)若离心率为的椭圆恰好经过A点,设切线l交椭圆的另一点为B,若设切线l,直线OA,OB的斜率为k,,①试用斜率k表示②当取得最大值时求此时椭圆的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:  +=1(a>b>0)的离心率e=,a+b=3.

(1)求椭圆C的方程;
(2)如图,A,B,D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明2m-k为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆=1(a>b>c>0,a2=b2+c2)的左、右焦点分别为F1,F2,若以F2为圆心,b-c为半径作圆F2,过椭圆上一点P作此圆的切线,切点为T,且PT的最小值为(a-c),则椭圆的离心率e的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆的半焦距,则的取值范围为              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆,是椭圆长轴的一个端点,是椭圆短轴的一个端点,为椭圆的一个焦点.若,则该椭圆的离心率为 (  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的中心为原点O,长轴在x轴上,离心率e=,过左焦点F1作x轴的垂线交椭圆于A、A′两点,=4.

(1)求该椭圆的标准方程;
(2)取平行于y轴的直线与椭圆相交于不同的两点P、P′,过P、P′作圆心为Q的圆,使椭圆上的其余点均在圆Q外.求△PP′Q的面积S的最大值,并写出对应的圆Q的标准方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图所示,中心均为原点O的双曲线与椭圆有公共焦点,M、N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是(  )
A.3B.2C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线x+y+4=0有且仅有一个交点,则椭圆的长轴长为(  )
A.3  B.2  C.2  D.4

查看答案和解析>>

同步练习册答案