已知数列为等差数列,数列为等比数列,若,且.
(1)求数列,的通项公式;
(2)是否存在,使得,若存在,求出所有满足条件的;若不存在,请说明理由.
(1),;(2)不存在假设的.
解析试题分析:本题考查等差数列与等比数列的概念、通项公式等基础知识,考查思维能力、分析问题与解决问题的能力.第一问,用代替,得到新的表达式,2个表达式相减,得到,设的通项公式,代入中,得到表达式,又由于为等比数列,所以化简成关于的方程,这个方程恒成立,所以,由于,所以,所以可以得到的通项公式;第二问,用反证法,找到矛盾.
试题解析:(1)当时,
∴,相减得:
,
令
则,(常数),
即对任意恒成立,
故.又,∴,.
(2)假设存在满足条件,则,
由于等式左边为奇数,故右边也为奇数,∴,
即,但左边为偶数,右边为奇数,矛盾!
所以不存在假设的.
考点:1.等差、等比数列的通项公式;2.反证法.
科目:高中数学 来源: 题型:解答题
已知等差数列{an}的前n项和为Sn,公差d≠0,且成等比数列.
(1)求数列{an}的通项公式;
(2)设是首项为1,公比为3的等比数列,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设数列的各项均为正实数,,若数列满足,,其中为正常数,且.
(1)求数列的通项公式;
(2)是否存在正整数,使得当时,恒成立?若存在,求出使结论成立的的取值范围和相应的的最小值;若不存在,请说明理由;
(3)若,设数列对任意的,都有成立,问数列是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com