精英家教网 > 高中数学 > 题目详情
函数f(x)=x3-3x+1,x∈[-3,0]的最小值是
 
考点:利用导数求闭区间上函数的最值
专题:导数的概念及应用
分析:利用导数的性质求解.
解答: 解:∵f(x)=x3-3x+1,
∴f′(x)=3x2-3,由f′(x)=0,得x=1或x=-1,
∵x∈[-3,0],x=1不合题意,∴x=-1.
∵f(-3)=-27+9+1=-17,
f(-1)=-1+3+1=3,
f(0)=1.
∴当x=-3时,函数f(x)取最小值-17.
故答案为:-17.
点评:考查学生利用导数研究函数极值的能力,利用导数研究函数的单调性的能力,解题时要注意导数性质的合理运用,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-ax2+1(a∈R).
(Ⅰ)若a>0,函数y=f(x)在区间(a,a2-3)上存在极值,求a的取值范围;
(Ⅱ)若a>2,求证:函数y=f(x)在(0,2)上恰有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,曲线段OMB是函数f(x)=x2(0<x<60)的图象,BA⊥x轴于A,曲线段OMB上一点M(t,f(t))处的切线PQ交x轴于P,交线段AB于Q,
(1)试用t表示切线PQ的方程;
(2)试用t表示出△QAP的面积g(t);若函数g(t)在(m,n)上单调递减,试求出m的最小值;
(3)若S△QAP∈[
121
4
,64]试求出点P横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的导数f′(x)=(x-
5
2
)(x-k)k,k≥1,k∈Z,已知x=k是函数f(x)的极大值点,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,∠C=90°,BC=2,则
AB
BC
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M满足{1,2}⊆M?{1,2,3,4,5},那么这样的集合M有
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个函数f(x)=2x+x,g(x)=x-2,h(x)=log2x+x的零点依次为r,s,t,则r,s,t的大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(cosα,1,sinα),
b
=(sinα,1,cosα),则向量
a
+
b
a
-
b
的夹角是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x=
4
3
,y=
1
3
,求
x3
-
y3
x
-
y
-
x3
+
y3
x
+
y
=(  )
A、
1
3
B、1
C、
4
3
D、
5
3

查看答案和解析>>

同步练习册答案