精英家教网 > 高中数学 > 题目详情
证明:已知,则
见解析

试题分析:采用分析法证明,要证明,即证明 ,必须证;即证;而显然成立
,要证明,即证明,必须证,必须证;即证;而显然成立.故原不等式成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(1)求证:当时,
(2)证明: 不可能是同一个等差数列中的三项.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax (a>1).
(1)证明:函数f(x)在(-1,+∞)上为增函数;
(2)用反证法证明方程f(x)=0没有负数根.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图给出了一个“等差数阵”:其中每行、每列都是等差数列,aij表示位于第i行第j列的数.
(Ⅰ)写出a45的值;
(Ⅱ)写出aij的计算公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知数列{an}满足a1=1,an+an+1=(
1
4
)n
(n∈N+),Sn=a1+4a2+42a3+…+4n-1an,类比课本中推导等比数列前n项和公式的方法,可求得5Sn-4nan=(  )
A.
n
2
B.nC.n+1D.n-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面是一段演绎推理:如果直线平行于平面,则这条直线平行于平面内的所有直线;已知直线b平面α,直线a?平面α;所以直线b直线a,在这个推理中(  )
A.大前提正确,结论错误
B.小前提与结论都是错误的
C.大、小前提正确,只有结论错误
D.大前提错误,结论错误

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )
A.假设至少有一个钝角B.假设至少有两个钝角
C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:
,这与三角形内角和为相矛盾,不成立;②所以一个三角形中不能有两个直角;③假设三角形的三个内角中有两个直角,不妨设;正确顺序的序号为 (     )
A.①②③B.③①②C.①③②D.②③①

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

求证:(1);  (2) +>+

查看答案和解析>>

同步练习册答案