精英家教网 > 高中数学 > 题目详情
17.从1,2,3,4,5这5个数字中任取3个数字组成没有重复数字的三位数,则这个三位数是偶数的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

分析 先求出基本事件总数n=${A}_{5}^{3}$=60,再求出这个三位数是偶数包含的基本事件个数,由此能求出这个三位数是偶数的概率.

解答 解:从1,2,3,4,5这5个数字中任取3个数字组成没有重复数字的三位数,
基本事件总数n=${A}_{5}^{3}$=60,
这个三位数是偶数包含的基本事件个数m=${C}_{2}^{1}$${A}_{4}^{2}$=24,
∴这个三位数是偶数的概率为p=$\frac{m}{n}$=$\frac{24}{60}$=$\frac{2}{5}$.
故选:B.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.设$f(x)=\left\{\begin{array}{l}1-{x^2},x<1\\ lnx,x≥1\end{array}\right.$,若函数g(x)=f(x)-ax-1有4不同的零点,则a的取值范围为$(0,\frac{1}{e^2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=x2+(a+2)x+b,若f(-1)=-2,且对于任意实数x都有f(x)≥2x.
(1)求f(x)的解析式;
(2)讨论函数f(x)在区间[-3,1]上的单调性;
(3)求函数f(x)在区间[-3,1]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=$\frac{{e}^{x}}{x}$,若方程f2(x)+2a2=3a|f(x)|有且仅有4个不等实根,则实数a的取值范围为(  )
A.(0,$\frac{e}{2}$)B.($\frac{e}{2}$,e)C.(0,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\left\{\begin{array}{l}{\frac{3}{4}x+\frac{5}{4},x<1}\\{{2}^{x},x≥1}\end{array}\right.$,则满足f(f(t))=2f(t)的t的取值范围是{t|t=-3或t≥-$\frac{1}{3}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.集合A={-2,-1,0,1,2},B={-1,2,3},则A∪B=(  )
A.{-2,-1,0,1,2}B.{-1,2,3}C.{-2,-1,0,1,2,3}D.{-1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知椭圆x2+$\frac{{y}^{2}}{{b}^{2}}$=1(0<b<1),其左、右焦点分别为F1、F2,|F1F2|=2c.若此椭圆上存在点P,使P到直线x=$\frac{1}{c}$的距离是|PF1|与|PF2|的等差中项,则b的最大值为$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设数列{an}的前n项和为Sn,若${S_n}=1-\frac{2}{3}{a_n}$(n∈N*),则$\lim_{n→∞}{S_n}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z的实部和虚部相等,且z(2+i)=3-bi(b∈R),则|z|=(  )
A.3$\sqrt{2}$B.2$\sqrt{2}$C.3D.2

查看答案和解析>>

同步练习册答案