精英家教网 > 高中数学 > 题目详情

设Sn是有穷数列{an}的前n项和,定义:为数列{an}的“Kisen”和.如果有99项的数列:a1,a2…a99的“Kisen”和T99=1000,则有100项的数列:1,a1,a2,…a99的“Kisen”和T100=________.

答案:991
解析:

解:记99项数列前n项和为,由已知1000×99,设100项数列的前n项和为,则…,,所以


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知有穷数列{an}共有2k项(整数k≥2),首项a1=2.设该数列的前n项和为Sn,且an+1=(a-1)Sn+2(n=1,2,…,2k-1),其中常数a>1.
(1)求证:数列{an}是等比数列;
(2)若a=2
2
2k-1
,数列{bn}满足bn=
1
n
log2(a1a2an)
(n=1,2,…,2k),求数列{bn}的通项公式;
(3)若(2)中的数列{bn}满足不等式|b1-
3
2
|+|b2-
3
2
|+…+|b2k-1-
3
2
|+|b2k-
3
2
|≤4,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an中,a1=1,a2=a-1(a≠1,a为实常数),前n项和Sn恒为正值,且当n≥2时,
1
Sn
=
1
an
-
1
an+1

(1)求证:数列Sn是等比数列;
(2)设an与an+2的等差中项为A,比较A与an+1的大小;
(3)设m是给定的正整数,a=2.现按如下方法构造项数为2m有穷数列bn:当k=m+1,m+2,…,2m时,bk=ak•ak+1;当k=1,2,…,m时,bk=b2m-k+1.求数列{bn}的前n项和为Tn(n≤2m,n∈N*).

查看答案和解析>>

科目:高中数学 来源:专项题 题型:解答题

已知有穷数列{an}共有2k项(整数k≥2),首项a1=2。设该数列的前n项和为Sn,且an+1=(a-1)Sn+2(n=1,2,…,2k-1),其中常数a>1,
(Ⅰ)求证:数列{an}是等比数列;
(Ⅱ)若,数列{bn}满足bn=log2(a1a2…an)(n=1,2,…,2k),求数列{bn}的通项公式;
(Ⅲ)若(Ⅱ)中的数列{bn}满足不等式,求k的值。

查看答案和解析>>

科目:高中数学 来源: 题型:

已知有穷数列{an}共有2k项(整数k≥2),首项a1=2,设该数列的前n项和为Sn,且an+1=(a-1)Sn+2(n=1,2,…,2k-1),其中常数a>1.

(1)求证:数列{an}是等比数列;

(2)若a=,数列{bn}满足bn=log2(a1a2…an)(n=1,2,…,2k),求数列{bn}的通项公式;

(3)若(2)中的数列{bn}满足不等式.

|b1-|+|b2-|+…+|b2k-1-|+|b2k-|≤4,求k的值.

查看答案和解析>>

科目:高中数学 来源:2011年江苏省苏北四市高三第二次联考数学模拟试卷(一)(解析版) 题型:解答题

已知数列an中,a1=1,a2=a-1(a≠1,a为实常数),前n项和Sn恒为正值,且当n≥2时,
(1)求证:数列Sn是等比数列;
(2)设an与an+2的等差中项为A,比较A与an+1的大小;
(3)设m是给定的正整数,a=2.现按如下方法构造项数为2m有穷数列bn:当k=m+1,m+2,…,2m时,bk=ak•ak+1;当k=1,2,…,m时,bk=b2m-k+1.求数列bn的前n项和为Tn(n≤2m,n∈N*).

查看答案和解析>>

同步练习册答案