精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C1 +y2=1,椭圆C2以C1的长轴为短轴,且与C1有相同的离心率.
(1)求椭圆C2的方程;
(2)设O为坐标原点,点A,B分别在椭圆C1和C2上, ,求直线AB的方程.

【答案】
(1)解:椭圆 的长轴长为4,离心率为

∵椭圆C2以C1的长轴为短轴,且与C1有相同的离心率

∴椭圆C2的焦点在y轴上,2b=4,为

∴b=2,a=4

∴椭圆C2的方程为


(2)解:设A,B的坐标分别为(xA,yA),(xB,yB),

∴O,A,B三点共线,且点A,B不在y轴上

∴设AB的方程为y=kx

将y=kx代入 ,消元可得(1+4k2)x2=4,∴

将y=kx代入 ,消元可得(4+k2)x2=16,∴

,∴ =4

,解得k=±1,

∴AB的方程为y=±x


【解析】(1)求出椭圆 的长轴长,离心率,根据椭圆C2以C1的长轴为短轴,且与C1有相同的离心率,即可确定椭圆C2的方程;(2)设A,B的坐标分别为(xA , yA),(xB , yB),根据 ,可设AB的方程为y=kx,分别与椭圆C1和C2联立,求出A,B的横坐标,利用 ,即可求得直线AB的方程.
【考点精析】利用椭圆的标准方程对题目进行判断即可得到答案,需要熟知椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合U=R,A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求A∩B,(UA)∪B;
(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,且过点.若点在椭圆上,则点称为点的一个“椭点”.

(1)求椭圆的标准方程;

(2)若直线 与椭圆相交于 两点,且 两点的“椭点”分别为 ,以为直径的圆经过坐标原点,试求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点P(4,2)是直线l被椭圆 所截得的线段的中点,
(1)求直线l的方程
(2)求直线l被椭圆截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率为 ,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+ =0相切.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线L:y=kx+m与椭圆C相交于A、B两点,且kOAkOB=﹣ ,求证:△AOB的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在上的函数满足 .

(1)求函数的解析式;

(2)求函数的单调区间;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是偶函数,又在(0,+∞)单调递增的函数是(
A.y=﹣x2
B.y=2|x|
C.y=| |
D.y=lg|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4-4 坐标系与参数方程) 以平面直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,设曲线C的参数方程为 (是参数),直线的极坐标方程为.

1)求直线的直角坐标方程和曲线C的普通方程;

2)设点P为曲线C上任意一点,求点P到直线的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|a﹣1≤x≤a+1},集合B={x|﹣1≤x≤5}.
(1)若a=5,求A∩B;
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

同步练习册答案