精英家教网 > 高中数学 > 题目详情
2.已知锐角△ABC中的内角A,B,C的对边分别为a,b,c,定义向量$\overrightarrow m$=(2sinB,$\sqrt{3}$),$\overrightarrow n$=(${2{{cos}^2}\frac{B}{2}$-1,cos2B),且$\overrightarrow m⊥\overrightarrow n$.
(1)求角B的大小;
(2)求函数f(x)=sin2xcosB-cos2xsinB的单调递增区间;
(3)如果b=4,求△ABC的面积的取值范围.

分析 (1)利用向量的垂直关系,化简求解即可.
(2)利用两角和的正弦函数化简,通过正弦函数的单调性求解即可.
(3)利用三角形的面积,以及两角和的正弦函数求解范围即可.

解答 解:(1)∵$\overrightarrow m$=(2sinB,$\sqrt{3}$),$\overrightarrow n$=(${2{{cos}^2}\frac{B}{2}$-1,cos2B),$\overrightarrow{m}⊥\overrightarrow{n}$,
∴2sinBcosB+$\sqrt{3}$cos 2B=0,即sin2B=-$\sqrt{3}$cos2B,
∴tan2B=-$\sqrt{3}$,又B为锐角,∴2B∈(0,π),
∴2B=$\frac{2π}{3}$,B=$\frac{π}{3}$,
(2)∴f(x)=sin2xcosB-cos2xsinB=sin(2x-$\frac{π}{3}$).
令-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{3}$≤$\frac{π}{2}$+2kπ(k∈Z),
解得kπ-$\frac{π}{12}$≤x≤kπ+$\frac{5π}{12}$(k∈Z),
∴函数f(x)的单调递增区间是:[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z),
(3)由(1)知B=$\frac{π}{3}$,b=4,
∵$S△ABC=\frac{1}{2}acsinB=\frac{{16\sqrt{3}}}{3}sinAsin(\frac{2π}{3}-A)$=$\frac{{8\sqrt{3}}}{3}sin({2A-\frac{π}{6}})+\frac{{4\sqrt{3}}}{3}$
∵$A∈({\frac{π}{6},\frac{π}{2}})$,
∴$S△ABC∈({\frac{{4\sqrt{3}}}{3},4\sqrt{3}}]$.

点评 本题考查两角和与差的三角函数,向量的数量积的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{ax+b}{{1+{x^2}}}$的定义域为(-1,1),满足f(-x)=-f(x),且f(${\frac{1}{2}}$)=$\frac{2}{5}$.
(1)求函数f(x)的解析式;
(2)证明f(x)在(-1,1)上是增函数;
(3)解不等式f(x2-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合A={x|x2-2x-8<0},$B=\left\{{x\left|{{2^x}<\frac{1}{2}}\right.}\right\}$,则图中阴影部分表示的集合为(  )
A.{x|-4<x<-1}B.{x|-1≤x<2}C.{x|-4<x≤-1}D.{x|-1≤x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知四棱锥P-ABCD,底面对角线AC,BD交于点O,$\overrightarrow{AB}=\overrightarrow{DC}且\overrightarrow{AC}•(\overrightarrow{DC}-\overrightarrow{BC})=0$,又知OA=4,OB=3,OP=4,OP⊥底面ABCD,设点M满足$\overrightarrow{PM}$=λ$\overrightarrow{MC}$(λ>0).
(1)当λ=$\frac{1}{2}$时,求直线PA与平面BDM所成角的正弦值;
(2)问线段PC上是否存在这样的点M,使二面角M-AB-C的大小为$\frac{π}{4}$,若存在求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.从6名短跑较好的同学中选4人参加4×100m接力赛,其中甲乙两人必须入选,且乙只能亲手接过甲传来的棒,则不同的选派方法共有90种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F(1,0),点(-1,$\frac{\sqrt{2}}{2}$)在椭圆C上,点T满足$\overrightarrow{OT}$=$\frac{{a}^{2}}{\sqrt{{a}^{2}-{b}^{2}}}$•$\overrightarrow{OF}$(其中O为坐标原点),过点F作一斜率为k(k>0)的直线交椭圆于P、Q两点(其中P点在x轴上方,Q点在x轴下方).
(1)求椭圆C的方程;
(2)若k=1,求△PQT的面积;
(3)设点P′为点P关于x轴的对称点,判断$\overrightarrow{P′Q}$与$\overrightarrow{QT}$的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),当实数k取何值时,k$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-4$\overrightarrow{b}$平行?
(2)已知$\overrightarrow{a}$=(-2,3),$\overrightarrow{b}$∥$\overrightarrow{a}$,向量$\overrightarrow{b}$的起点为A(1,2),终点B在坐标轴上,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a>0且a≠1,命题p:函数y=loga(x+1)在区间(0,+∞)上为减函数;命题q:曲线y=x2+(2a-3)x+1与x轴相交于不同的两点.若p∨q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.$\sqrt{2+2cos8}$+2$\sqrt{1-sin8}$=(  )
A.2sin4B.-2sin4C.2cos4D.-2cos4

查看答案和解析>>

同步练习册答案