分析 (1)根据条件即可得出f(x)为奇函数,原点有定义,从而f(0)=0,得出b=0,再由f($\frac{1}{2}$)=$\frac{2}{5}$即可求出a=1;
(2)根据增函数的定义,设任意的-1<x1<x2<1,然后作差,通分,证明f(x1)<f(x2),从而便得出f(x)在(-1,1)上是增函数;
(3)根据f(x)为奇函数便可得出f(x2-1)<-f(x),由f(x)在(-1,1)上为增函数即可得到不等式组$\left\{\begin{array}{l}{-1<{x}^{2}-1<1}\\{-1<x<1}\\{{x}^{2}-1<-x}\end{array}\right.$,解该不等式组便可得出原不等式的解集.
解答 解:(1)由题意知,f(x)为奇函数;
∴f(0)=b=0,则$f(x)=\frac{ax}{{1+{x^2}}}$;
又$f(\frac{1}{2})=\frac{\frac{a}{2}}{1+\frac{1}{4}}=\frac{2}{5}$;
∴a=1;
∴$f(x)=\frac{x}{{1+{x^2}}}$;
(2)设-1<x1<x2<1,则:
$f({x}_{1})-f({x}_{2})=\frac{{x}_{1}}{1+{{x}_{1}}^{2}}-\frac{{x}_{2}}{1+{{x}_{2}}^{2}}$=$\frac{({x}_{1}-{x}_{2})(1-{x}_{1}{x}_{2})}{(1+{{x}_{1}}^{2})(1+{{x}_{2}}^{2})}$;
又-1<x1<x2<1;
∴${x_1}-{x_2}<0,1-{x_1}{x_2}>0,1+x_1^2>0,1+x_2^2>0$;
∴f(x1)-f(x2)<0;
即f(x1)<f(x2);
∴f(x)在(-1,1)上是增函数;
(3)由f(x2-1)+f(x)<0得f(x2-1)<-f(x);
即f(x2-1)<f(-x);
由(2)知f(x)在(-1,1)上是增函数,则$\left\{{\begin{array}{l}{-1<{x^2}-1<1}\\{-1<x<1}\\{{x^2}-1<-x}\end{array}⇒\left\{{\begin{array}{l}{-\sqrt{2}<x<0,或0<x<\sqrt{2}}\\{-1<x<1}\\{\frac{{-1-\sqrt{5}}}{2}<x<\frac{{-1+\sqrt{5}}}{2}}\end{array}}\right.}\right.$$⇒-1<x<0或0<x<\frac{{-1+\sqrt{5}}}{2}$;
∴原不等式的解集为$({-1,0})∪({0,\frac{{-1+\sqrt{5}}}{2}})$.
点评 考查奇函数的定义,奇函数在原点有定义时,f(0)=0,增函数的定义,以及根据增函数定义证明一个函数为增函数的方法和过程,根据函数单调性解不等式的方法.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-4,+∞) | B. | [4,+∞) | C. | (-∞,-4] | D. | (-∞,4] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{5}$ | B. | $\frac{1}{5}$ | C. | -5 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com