精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=xcosx,有下列4个结论:
①函数f(x)的图象关于y轴对称;
②存在常数T>0,对任意的实数x,恒有f(x+T)=f(x)成立;
③对于任意给定的正数M,都存在实数x0,使得|f(x0)|≥M;
④函数f(x)的图象上存在无数个点,使得该函数在这些点处的切线与x轴平行.
其中,所有正确结论的序号为③④.

分析 分析函数的奇偶性,周期性,值域,极值点个数,可得答案.

解答 解:函数f(x)=xcosx为奇函数,故函数f(x)的图象关于原点对称,故①错误;
函数不是周期函数,故不存在常数T>0,对任意的实数x,恒有f(x+T)=f(x)成立,故②错误;
函数f(x)=xcosx的值域为R,故对于任意给定的正数M,都存在实数x0,使得|f(x0)|≥M,故③正确;
函数有无数个极值点,使得该函数在这些点处的切线与x轴平行,故④正确;
故答案为:③④

点评 本题以命题的真假判断与应用为载体考查了函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.由1,2,3三个数字组成数字允许重复的三位数,则百位和十位上的数字均不小于个位数字的概率为(  )
A.$\frac{4}{27}$B.$\frac{1}{3}$C.$\frac{13}{27}$D.$\frac{14}{27}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)为奇函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,f(1))处的切线方程是y=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{ax+b}{{1+{x^2}}}$的定义域为(-1,1),满足f(-x)=-f(x),且f(${\frac{1}{2}}$)=$\frac{2}{5}$.
(1)求函数f(x)的解析式;
(2)证明f(x)在(-1,1)上是增函数;
(3)解不等式f(x2-1)+f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.甲、乙、丙、丁、戊5名同学参加某一项比赛,决出第一到第五的名次.甲、乙、丙三人去询问成绩,回答者对甲说:“很遗憾,你和乙都未得到第一名”; 对乙说:“你当然不会是最差的”;对丙说:“你比甲乙都好”;从这个回答分析:5人名次的排列有(  )种不同情况.
A.54B.28C.36D.72

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数g(x)=e2(ax2+a+1)-2ex,若对任意的x∈[1,2],都有g(x)≥0,则实数a的取值范围是(  )
A.[$\frac{1}{5}$,+∞)B.[$\frac{2}{e}$,+∞)C.[$\frac{2}{e}-1$,$\frac{1}{5}$]D.[1-$\frac{2}{e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}满足${a_1}=0,{a_{n+1}}=\frac{{{a_n}-\sqrt{3}}}{{1+\sqrt{3}{a_n}}}$,则a6=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设集合A={x|x2-2x-8<0},$B=\left\{{x\left|{{2^x}<\frac{1}{2}}\right.}\right\}$,则图中阴影部分表示的集合为(  )
A.{x|-4<x<-1}B.{x|-1≤x<2}C.{x|-4<x≤-1}D.{x|-1≤x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),当实数k取何值时,k$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-4$\overrightarrow{b}$平行?
(2)已知$\overrightarrow{a}$=(-2,3),$\overrightarrow{b}$∥$\overrightarrow{a}$,向量$\overrightarrow{b}$的起点为A(1,2),终点B在坐标轴上,求点B的坐标.

查看答案和解析>>

同步练习册答案