精英家教网 > 高中数学 > 题目详情
9.已知函数g(x)=e2(ax2+a+1)-2ex,若对任意的x∈[1,2],都有g(x)≥0,则实数a的取值范围是(  )
A.[$\frac{1}{5}$,+∞)B.[$\frac{2}{e}$,+∞)C.[$\frac{2}{e}-1$,$\frac{1}{5}$]D.[1-$\frac{2}{e}$,+∞)

分析 根据g(x)≥0即可得出$a≥\frac{2{e}^{x}-{e}^{2}}{{e}^{2}({x}^{2}+1)}$,可设$f(x)=\frac{2{e}^{x}-{e}^{2}}{{e}^{2}({x}^{2}+1)}$,且x∈[1,2],从而可求导数,并根据导数符号判断f(x)的单调性,根据单调性即可求出f(x)在[1,2]上的最大值,从而得出a的取值范围.

解答 解:由g(x)≥0得,e2(ax2+a+1)-2ex≥0;
∴$a≥\frac{2{e}^{x}-{e}^{2}}{{e}^{2}({x}^{2}+1)}$;
设f(x)=$\frac{2{e}^{x}-{e}^{2}}{{e}^{2}({x}^{2}+1)}$,$f′(x)=\frac{2{e}^{x}({x}^{2}+1)-4x{e}^{x}+2{e}^{2}x}{{e}^{2}({x}^{2}+1)^{2}}$=$\frac{2{e}^{x}(x-1)^{2}+2{e}^{2}x}{{e}^{2}({x}^{2}+1)^{2}}$;
∵x∈[1,2];
∴f′(x)>0;
∴f(x)在[1,2]上单调递增;
∴f(x)在[1,2]上的最大值为$f(2)=\frac{{e}^{2}}{5{e}^{2}}=\frac{1}{5}$;
∴$a≥\frac{1}{5}$;
∴实数a的取值范围是$[\frac{1}{5},+∞)$.
故选:A.

点评 考查不等式的性质,商的导数的计算公式,完全平方公式的运用,根据导数符号判断函数单调性的方法,以及根据单调性求函数在闭区间上的最值的方法,恒成立问题的处理方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.将二进制数1010 101(2)化为八进制数为125(8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知角θ的终边过点(2,3),则tan(θ-$\frac{π}{4}$)等于(  )
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.-5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.${∫}_{\frac{π}{2}}^{π}$cosxdx=(  )
A.1B.0C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=xcosx,有下列4个结论:
①函数f(x)的图象关于y轴对称;
②存在常数T>0,对任意的实数x,恒有f(x+T)=f(x)成立;
③对于任意给定的正数M,都存在实数x0,使得|f(x0)|≥M;
④函数f(x)的图象上存在无数个点,使得该函数在这些点处的切线与x轴平行.
其中,所有正确结论的序号为③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设等差数列{an}的公差为d,且a1,d∈N*.若设M1是从a1开始的前t1项数列的和,即M1=a1+…+at1(1≤t1,t1∈N*),${M_2}={a_{{t_1}+1}}+{a_{{t_1}+2}}+…+{a_{t_2}}(1<{t_2}∈{N^*})$,如此下去,其中数列{Mi}是从第ti-1+1(t0=0)开始到第ti(1≤ti)项为止的数列的和,即${M_i}={a_{{t_{i-1}}+1}}+…+{a_{t_i}}(1≤{t_i},{t_i}∈{N^*})$.
(1)若数列an=n(1≤n≤13,n∈N*),试找出一组满足条件的M1,M2,M3,使得:M22=M1M3
(2)试证明对于数列an=n(n∈N*),一定可通过适当的划分,使所得的数列{Mn}中的各数都为平方数;
(3)若等差数列{an}中a1=1,d=2.试探索该数列中是否存在无穷整数数列{tn},(1≤t1<t2<t3<…<tn),n∈N*,使得{Mn}为等比数列,如存在,就求出数列{Mn};如不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1,
(1)求f(x)的解析式;
(2)方程f(x)=$\frac{1}{2}$x+1+k 在(-1,1)上有实根,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.用数学归纳法证明:$1+2+3+…+n=\frac{1}{2}\;n\;(n+1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.运行如图所示的程序框图,则输出T=20.

查看答案和解析>>

同步练习册答案