精英家教网 > 高中数学 > 题目详情
19.运行如图所示的程序框图,则输出T=20.

分析 根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量T的值,模拟程序的运行过程,可得答案.

解答 解:当S=0,T=0时,不满足退出循环的条件,故S=4,n=2,T=2; 
当S=4,T=2时,不满足退出循环的条件,故S=8,n=4,T=6; 
当S=8,T=6时,不满足退出循环的条件,故S=12,n=6,T=12; 
当S=12,T=12时,不满足退出循环的条件,故S=16,n=8,T=20; 
当S=16,T=20时,满足退出循环的条件,
故输出的T值为20,
故答案为:20.

点评 本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数g(x)=e2(ax2+a+1)-2ex,若对任意的x∈[1,2],都有g(x)≥0,则实数a的取值范围是(  )
A.[$\frac{1}{5}$,+∞)B.[$\frac{2}{e}$,+∞)C.[$\frac{2}{e}-1$,$\frac{1}{5}$]D.[1-$\frac{2}{e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知四棱锥P-ABCD,底面对角线AC,BD交于点O,$\overrightarrow{AB}=\overrightarrow{DC}且\overrightarrow{AC}•(\overrightarrow{DC}-\overrightarrow{BC})=0$,又知OA=4,OB=3,OP=4,OP⊥底面ABCD,设点M满足$\overrightarrow{PM}$=λ$\overrightarrow{MC}$(λ>0).
(1)当λ=$\frac{1}{2}$时,求直线PA与平面BDM所成角的正弦值;
(2)问线段PC上是否存在这样的点M,使二面角M-AB-C的大小为$\frac{π}{4}$,若存在求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个焦点为F(1,0),点(-1,$\frac{\sqrt{2}}{2}$)在椭圆C上,点T满足$\overrightarrow{OT}$=$\frac{{a}^{2}}{\sqrt{{a}^{2}-{b}^{2}}}$•$\overrightarrow{OF}$(其中O为坐标原点),过点F作一斜率为k(k>0)的直线交椭圆于P、Q两点(其中P点在x轴上方,Q点在x轴下方).
(1)求椭圆C的方程;
(2)若k=1,求△PQT的面积;
(3)设点P′为点P关于x轴的对称点,判断$\overrightarrow{P′Q}$与$\overrightarrow{QT}$的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),当实数k取何值时,k$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-4$\overrightarrow{b}$平行?
(2)已知$\overrightarrow{a}$=(-2,3),$\overrightarrow{b}$∥$\overrightarrow{a}$,向量$\overrightarrow{b}$的起点为A(1,2),终点B在坐标轴上,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设F1,F2分别是$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点.若在椭圆上存在点P满足|PF1|=|F1F2|,且原点到直线PF2的距离等于椭圆的短半轴长,则该椭圆的离心率为(  )
A.$\frac{5}{7}$B.$\frac{7}{5}$C.$\frac{1}{7}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知a>0且a≠1,命题p:函数y=loga(x+1)在区间(0,+∞)上为减函数;命题q:曲线y=x2+(2a-3)x+1与x轴相交于不同的两点.若p∨q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设全集I={1,3,a2},A={3,a-1},CUA={4},则a为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.同时投掷两个骰子,计算下列事件的概率:
(1)事件A:两个骰子点数相同;
(2)事件B:两个骰子点数之和为8;
(3)事件C:两个骰子点数之和为奇数.

查看答案和解析>>

同步练习册答案