精英家教网 > 高中数学 > 题目详情
已知等比数列{an}前n项和为Sn=2n-a,n∈N*,设公差不为零的等差数列{bn}满足:b1=a1+2,(b4+5)2=(b2+5)(b8+5).
(Ⅰ)求an及bn
(Ⅱ)设数列{log2 an}的前n项和为Tn,求使Tn>bn的最小的正整数n的值.
考点:数列的求和,等差数列的性质,等比数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件求出前3项,由a22=a1a3,解得a=1,从而得到an=2n-1.由已知条件得(8+3d)2=(8+d)(8+7d),解得d=0(舍),或d=8.从而得到bn=8n-5.n∈N*
(Ⅱ)由an=2n-1,得log2an=n-1,故由已知条件得到
1
2
n(n-1)>8n-5,n∈N*
,由此能求出使Tn>bn的最小的正整数n的值.
解答: 解:(Ⅰ)∵等比数列{an}前n项和为Sn=2n-a,n∈N*
∴a1=S1=2-a1
a2=S2-S1=2,
a3=S3-S2=4,
a22=a1a3,∴22=(2-a)•4,解得a=1,
an=2n-1
∵公差不为零的等差数列{bn}满足:b1=a1+2,
(b4+5)2=(b2+5)(b8+5),
∴(8+3d)2=(8+d)(8+7d),
解得d=0(舍),或d=8.
∴bn=8n-5.n∈N*
(Ⅱ)∵an=2n-1,∴log2an=n-1,
∴数列{log2 an}的前n项和为Tn=
n(0+n-1)
2
=
1
2
n(n-1)

∵bn=8n-5,Tn>bn
1
2
n(n-1)>8n-5,n∈N*

解得n≥17,
∴使Tn>bn的最小的正整数n的值为17.
点评:本题考查数列的通项公式的求法,考查满足条件的实数的最小值的求法,解题时要认真审题,注意等比数列的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,已知AA1⊥平面ABC,AA1=2,BC=2
3
,∠BAC=
π
2
,此三棱柱各个顶点都在一个球面上,则球的体积为(  )
A、
32π
3
B、16π
C、
25π
3
D、
31π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足an+1=2an-an-1(n≥2),且a1=1,a2=2,则数列{
1
anan+1
}的前10项之和等于(  )
A、
255
256
B、
511
512
C、
9
10
D、
10
11

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=
1
4
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N).
(Ⅰ)试判断数列{
1
an
+(-1)n}是否为等比数列,并说明理由;
(Ⅱ)设cn=ansin
(2n-1)π
2
,数列{cn}的前n项和为Tn,求证:对任意的n∈N*,Tn
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD的底面是平行四边形,平面PAB⊥平面ABCD,PA=PB=AB=
1
2
AD,∠BAD=60°,E,F分别为AD,PC的中点.
(1)求证:EF⊥平面PBD;
(2)若AB=2,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥A-BCDE中,AE⊥平面BCDE,∠ABC=∠BCD=∠CDA=90°,AC=6
3
,BC=CD=6.
(Ⅰ)求证:BD⊥平面ACE;
(Ⅱ)设点G在棱AC上,且CG=2GA,试求二面角C-EG-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2
(2)若a=1,求函数f(x)的单调区间;
(2)设函数f(x)在区间[1,2]上是增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
x2+1
+
(4-x)2+4
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex
(Ⅰ)当x>0时,设g(x)=f(x)-(a+1)x(a∈R).讨论函数g(x)的单调性;
(Ⅱ)证明当x∈[
1
2
,1]时,f(x)<x2+x+1.

查看答案和解析>>

同步练习册答案