精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知是函数的一个极值点. 
(Ⅰ)求的值;
(Ⅱ)当时,证明:

(1)(2)要证明差的绝对值小于等于e,只要证明差介于-e和e之间即可,求解函数的 最值的差可知。

解析试题分析:(Ⅰ)解:,       2分
由已知得,解得
时,,在处取得极小值.
所以.                     4分
(Ⅱ)证明:由(Ⅰ)知,.
时,在区间单调递减;
时,在区间单调递增.
所以在区间上,的最小值为.    8分

所以在区间上,的最大值为.      10分
对于,有
所以.            12分
考点:函数的最值
点评:解决的关键是利用导数判定单调性,并能结合函数的最值来证明不等式,属于中档题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分8分)已知,函数.
(Ⅰ)求的极值(用含的式子表示);
(Ⅱ)若的图象与轴有3个不同交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调递减区间;
(2)若,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数处有极小值
(1)求函数的解析式;
(2)若函数只有一个零点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知函数处取得极值,并且它的图象与直线在点( 1 , 0 ) 处相切, 求a , b , c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数(e为自然对数的底数).
(Ⅰ)当时,求函数的单调区间;
(Ⅱ)若对于任意,不等式恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=x-(a>0),g(x)=2lnx+bx且直线y=2x-2与曲线y=g(x)相切.
(1)若对[1,+)内的一切实数x,小等式f(x)≥g(x)恒成立,求实数a的取值范围;
(2)当a=l时,求最大的正整数k,使得对[e,3](e=2.71828是自然对数的底数)内的任意k个实数x1,x2,,xk都有成立;
(3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题14分) 已知函数f(x)=ax3+bx2+cx(a≠0)是定义在R上的奇函数,且x=-1时,函数取极值1。
(1)求a,b,c的值;
(2)若x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤2;
(3)求证:曲线y=f(x)上不存在两个不同的点A,B,使过A, B两点的切线都垂直于直线AB。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)函数
(Ⅰ)求的单调区间和最小值;
(Ⅱ)讨论的大小关系;
(Ⅲ)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案