精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x+
2
x
+alnx,a∈R

(1)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围.
(2)记函数g(x)=x2[f′(x)+2x-2],若g(x)的最小值是-6,求函数f(x)的解析式.
(本小题满分14分)
(1)f′(x)=2-
2
x2
+
a
x
≥0

a≥
2
x
-2x
在[1,+∞)上恒成立…(2分)
h(x)=
2
x
-2x,x∈[1,+∞)

h(x)=-
2
x2
-2<0
恒成立,
∴h(x)在[1,+∞)单调递减…(4分)
h(x)max=h(1)=0…(6分)
∴a≥0,
故实数a的取值范围为[0,+∞).…(7分)
(2)g(x)=2x3+ax-2,x>0
∵g′(x)=6x2+a…(9分)
当a≥0时,g′(x)≥0恒成立,
∴g(x)在(0,+∞)单调递增,无最小值,不合题意,
∴a<0.…(11分)
令g′(x)=0,则x=
-a
6
(舍负)
∵0<x<
-a
6
时,g′(x)<0;x>
-a
6
时,g′(x)>0,
∴g(x)在(0,
-a
6
)
上单调递减,在(
-a
6
+∞)
上单调递增,
x=
-a
6
是函数的极小值点.g(x)min=g(x)极小=g(
-a
6
)=-6
.…(13分)
解得a=-6,
f(x)=2x+
2
x
-6lnx
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

若函数f(x)=3x-x3在区间(a-1,a)上有最小值,则实数a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

当x∈(-1,3)时不等式的x2+ax-2<0恒成立,则a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=(x+1)lnx-x+1.
(Ⅰ)若xf′(x)≤x2+ax+1,求a的取值范围;
(Ⅱ)证明:(x-1)f(x)≥0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若对一切x∈R,不等式4x+(a-1)2x+1≥0恒成立,则a的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x-1-lnx
(Ⅰ)求曲线y=f(x)在点(2,f(2))处的切线方程;
(Ⅱ)求函数f(x)的极值;
(Ⅲ)对?x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某地方政府为科技兴市,欲将如图所示的一块不规则的非农业用地规划建成一个矩形的高科技工业园区,已知AB⊥BC,OABC,且AB=BC=6km,AO=3km,曲线段OC是二次函数y=ax2图象的一段,如果要使矩形的相邻两边分别落在AB,BC上,且一个顶点落在曲线段OC上,问应如何规划才能使矩形工业园区BQPN的用地面积最大?并求出最大的用地面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x3-2x,其中a-1≤x≤a+1,a∈R,设集合M={(m,f(n))|m,n∈[a-1,a+1]|},若f(x)单调递增,则S的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定积分的值为(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案