精英家教网 > 高中数学 > 题目详情
19.若实数x、y满足约束条$\left\{\begin{array}{l}{3x-y-3≤0}\\{x-2y+4≥0}\\{2x+y-2≤0}\end{array}\right.$,则z=x+y的最大值为(  )
A.1B.2C.3D.5

分析 先由约束条件画出可行域,再求出可行域各个角点的坐标,将坐标逐一代入目标函数,验证即得答案.

解答 解:如图即为满足不等式组$\left\{\begin{array}{l}3x-y-3≤0\\ x-2y+4≥0\\ 2x+y-2≤0\end{array}\right.$的可行域,
$\left\{\begin{array}{l}3x-y-3=0\\ x-2y+4=0\end{array}\right.$得A(2,3).
由图易得:当x=2,y=3时
x+y有最大值5.
故选:D.

点评 在解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知向量$\overrightarrow{a}$=(cos$\frac{3x}{2}$,sin$\frac{3x}{2}$),$\overrightarrow{b}$=(cos$\frac{x}{2}$,-sin$\frac{x}{2}$),且x∈[0,$\frac{π}{2}$].
(1)当x=$\frac{π}{2}$时,求|$\overrightarrow{a}-\overrightarrow{b}$|的值;
(2)若f(x)=$\overrightarrow{a}•\overrightarrow{b}$-2$λ|\overrightarrow{a}+\overrightarrow{b}|$的最小值是-$\frac{3}{2}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.点(1,1)在不等式组$\left\{\begin{array}{l}{mx+ny≤2}\\{ny-mx≤2}\\{my≥1}\end{array}\right.$,表示的平面区域内,则m2+n2的取值范围是(  )
A.[3,4]B.[2,4]C.[1,+∞)D.[1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,B(4,0),C(-4,0)动点A满足sinB-sinC=$\frac{1}{2}$sinA则动点A的轨迹方程为$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}=1$(x>2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,点A,B分别是椭圆$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,PA⊥PF,设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|.
(1)求点P的坐标;
(2)求点M的坐标;
(3)求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\frac{x}{\sqrt{-{x}^{2}-3x+4}}$的定义域为(  )
A.(-∞,4)∪(1,+∞)B.(-4,1)C.(-4,0)∪(0,1)D.(-1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和Sn=$\frac{1}{2}$n2+$\frac{1}{2}$n,
(1)求数列{an}的通项公式;
(2)令bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前2015项和T2015

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{a}{sinA}=\frac{c}{{\sqrt{3}cosC}}$
(1)求角C的大小;
(2)如果a+b=6,$\overrightarrow{CA}•\overrightarrow{CB}=4$,求边长c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.a=0是复数a+bi(a,b∈R)为纯虚数的(  )
A.必要条件B.充分条件
C.充要条件D.非充分非必要条件

查看答案和解析>>

同步练习册答案