精英家教网 > 高中数学 > 题目详情
4.函数y=$\frac{x}{\sqrt{-{x}^{2}-3x+4}}$的定义域为(  )
A.(-∞,4)∪(1,+∞)B.(-4,1)C.(-4,0)∪(0,1)D.(-1,4)

分析 利用分式的分母不为0,偶次方被开方数非负,求解即可.

解答 解:要使函数有意义,可得-x2-3x+4>0,
解得x∈(-4,1).
函数y=$\frac{x}{\sqrt{-{x}^{2}-3x+4}}$的定义域为(-4,1)
故选:B.

点评 本题考查函数的定义域的求法,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若点P(x,y)在圆x2+y2-2x-2y+1=0上,则$\frac{x+1}{y}$的最小值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow{a}$=(1-t,2t-1,0),$\overrightarrow{b}$=(2,t,2t),则|$\overrightarrow{a}$-$\overrightarrow{b}$|的最小值为(  )
A.$\sqrt{6}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=axn(1-x)+b(x>0),n为正整数,a,b为常数.曲线y=f(x)在(1,f(1))处的切线方程为x+y=1.函数g(x)=$\frac{{e}^{x}}{a{x}^{2}}$
(1)求a,b的值; 
(2)求曲线y=g(x)在点(1,g(1))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若实数x、y满足约束条$\left\{\begin{array}{l}{3x-y-3≤0}\\{x-2y+4≥0}\\{2x+y-2≤0}\end{array}\right.$,则z=x+y的最大值为(  )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,a,b,c分别为角A,B,C所对的边,已知b2+c2-a2=bc
(1)求角A的值;
(2)若a=$\sqrt{3}$,cosC=$\frac{\sqrt{3}}{3}$,求边c的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$sinθ=\frac{4}{5}$,$cosθ=-\frac{3}{5}$,则2θ是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线3x-$\sqrt{3}$=0的倾斜角是(  )
A.30°B.60°C.90°D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i是实系数方程x3-2mx+n=0的根,求实数m,n的值.

查看答案和解析>>

同步练习册答案