精英家教网 > 高中数学 > 题目详情
14.已知-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i是实系数方程x3-2mx+n=0的根,求实数m,n的值.

分析 利用方程的根满足方程,通过复数相等的充要条件求解即可.

解答 解:依题意,将-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i代入原方程,得(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)3-2m(-$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i)+n=0,
即(m+n+1)+(-m$\sqrt{3}$)i=0,…(8分)
由题意得$\left\{\begin{array}{l}m=0\\ m+n+1=0\end{array}\right.$,解之得$\left\{\begin{array}{l}m=0\\ n=-1\end{array}\right.$.…(12分)

点评 本题考查复数的相等的充要条件的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数y=$\frac{x}{\sqrt{-{x}^{2}-3x+4}}$的定义域为(  )
A.(-∞,4)∪(1,+∞)B.(-4,1)C.(-4,0)∪(0,1)D.(-1,4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.5个代表分4张同样的参观券,每人最多分一张,且全部分完,那么分法一共有(  )
A.A${\;}_{5}^{4}$种B.45C.54D.C${\;}_{5}^{4}$种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知p:“?x∈[1,3],x2-a≥0”,q:“?x∈R,x2+2ax+2-a=0”若“p∧q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.a=0是复数a+bi(a,b∈R)为纯虚数的(  )
A.必要条件B.充分条件
C.充要条件D.非充分非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.化简sin420°的值是(  )
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$f(x)=3sin(-2x+\frac{π}{3})$的单调增区间是[kπ+$\frac{5π}{12}$ kπ+$\frac{11π}{12}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\overrightarrow{i}$,$\overrightarrow{j}$分别是与x轴,y轴方向相同的两个单位向量,$\overrightarrow{O{A}_{1}}$=$\overrightarrow{j}$,$\overrightarrow{O{A}_{2}}$=5$\overrightarrow{j}$,$\overrightarrow{{A}_{n-1}{A}_{n}}$=2$\overrightarrow{{A}_{n}{A}_{n+1}}$(n≥2,n∈N+),$\overrightarrow{OB}$=3$\overrightarrow{i}$+3$\overrightarrow{j}$,$\overrightarrow{{B}_{n}{B}_{n+1}}$=2$\overrightarrow{i}$+2$\overrightarrow{j}$(n∈N+).
(Ⅰ)求|$\overrightarrow{{A}_{7}{A}_{8}}$|;
(Ⅱ)求$\overrightarrow{O{A}_{n}}$,$\overrightarrow{O{B}_{n}}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知不等式x2-3x+2≥0的解集为A,不等式$\frac{x-3}{x}$≤-1的解集为B,不等式x2-(a+1)x+a<0的解集为C
(1)求A∩B
(2)若A∪C=R,求a的取值范围.

查看答案和解析>>

同步练习册答案