分析 (Ⅰ)求出函数的导数,计算f(2),f′(2),求出切线方程即可;
(Ⅱ)设函数g(x)=ln(x-1)-$\frac{a(x-2)}{x}$,(x≥2),于是问题转化为g(x)≥0对任意的x≥2恒成立,根据函数的单调性求出a的范围即可.
解答 解:(Ⅰ)a=2017时,f(x)=xln(x-1)-2017(x-2),
则f′(x)=ln(x-1)+$\frac{x}{x-1}$-2017,故f′(2)=-2015,
又f(2)=0,
故切线方程是:y-0=-2015(x-2),
即2015x+y-4030=0;
(Ⅱ)由f(x)≥0得xln(x-1)-a(x-2)≥0,而x≥2,
故ln(x-1)-$\frac{a(x-2)}{x}$≥0,
设函数g(x)=ln(x-1)-$\frac{a(x-2)}{x}$,(x≥2),
于是问题转化为g(x)≥0对任意的x≥2恒成立,
注意到g(2)=0,故若g′(x)≥0,则g(x)递增,
从而g(x)≥g(2)=0,而g′(x)=$\frac{{x}^{2}-2a(x-1)}{(x-1{)x}^{2}}$,
∴g′(x)≥0等价于x2-2a(x-1)≥0,
分离参数得a≤$\frac{{x}^{2}}{2(x-1)}$=$\frac{1}{2}$[(x-1)+$\frac{1}{x-1}$+2],
由均值不等式得$\frac{1}{2}$[(x-1)+$\frac{1}{x-1}$+2]≥2,
当且仅当x=2时取“=”成立,于是a≤2,
当a>2时,设h(x)=x2-2a(x-1),
∵h(2)=4-2a=2(2-a)>0,
又抛物线h(x)=x2-2a(x-1)开口向上,
故h(x)=x2-2a(x-1)有2个零点,
设两个零点为x1,x2,则x1<2<x2,
于是x∈(2,x2)时,h(x)<0,故g′(x)<0,g(x)递减,
故g(x)<g(2)=0,与题设矛盾,不合题意,
综上,a的范围是(-∞,2].
点评 本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | a>c>b | C. | c>b>a | D. | b>a>c |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
| 频数 | 20 | 40 | 80 | 50 | 10 | |
| 男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
| 频数 | 45 | 75 | 90 | 60 | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若m?α,n∥β,m,n是异面直线,则α,β相交 | |
| B. | 若m⊥α,m⊥β,n∥α,则n∥β | |
| C. | 若m?α,n∥α,m,n共面于β,则m∥n | |
| D. | 若m⊥α,n⊥β,α,β不平行,则m,n为异面直线 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | R | B. | (-∞,-e] | C. | [e,+∞) | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com