精英家教网 > 高中数学 > 题目详情
已知m、n是两条不同的直线,α、β是两个不同的平面,给出下列命题:
①若α⊥β,m∥α,则m⊥β;
②若m⊥α,n⊥β,且m⊥n,则α⊥β;
③若m⊥β,m∥α,则α⊥β;
④若m∥α,n∥β,且m∥n,则α∥β.
其中正确命题的序号是(  )
分析:对于①当α⊥β,m∥α时,m⊥β不一定成立;
对于②可以看成m是平面α的法向量,n是平面β的法向量即可;
对于③可由面面垂直的判断定理作出判断;
对于④m∥α,n∥β,且m∥n,α,β也可能相交.
解答:解:①当α⊥β,m∥α时,m⊥β不一定成立,所以错误;
②利用当两个平面的法向量互相垂直时,这两个平面垂直,故成立;
③因为m∥α,则一定存在直线n在β,使得m∥n,又m⊥β可得出n⊥β,由面面垂直的判定定理知,α⊥β,故成立;
④m∥α,n∥β,且m∥n,α,β也可能相交,如图所示,,所以错误,
故选B.
点评:本题以命题的真假判断为载体考查了空间直线与平面的位置关系,熟练掌握空间线面关系的判定及几何特征是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、已知m,n是两条不同的直线,α是一个平面,有下列四个命题:
①①若m∥α,n∥α,则m∥n;②若m⊥α,n⊥α,则m∥n;
③若m∥α,n⊥α,则m⊥n;④若m⊥α,m⊥n,则n∥α.
其中真命题的序号有
②③
. (请将真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

4、已知m、n是两条不同直线,α、β、γ是三个不同平面,以下有三种说法:
①若α∥β,β∥γ,则γ∥α; ②若α⊥γ,β∥γ,则α⊥β;
③若m⊥β,m⊥n,n?β,则n∥β.
其中正确命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

6、已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是

①若α⊥γ,α⊥β,则γ∥β      ②若m∥n,m?α,n?β,则α∥β
③若m∥n,m∥α,则n∥α      ④若n⊥α,n⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

14、已知m、n是两条不同的直线,α、β是两个不同的平面,有下列命题:
①若m?α,n∥α,则m∥n;②若m∥α,m∥β,则α∥β;
③若m⊥α,m⊥n,则n∥α;④若m⊥α,m⊥β,则α∥β;
其中真命题的个数是
1个

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的有

①若m∥α,n∥α,则m∥n;               ②若α⊥γ,β⊥γ,则α∥β;
③若m∥α,m∥β,则α∥β;               ④若m⊥α,n⊥α,则m∥n.

查看答案和解析>>

同步练习册答案