精英家教网 > 高中数学 > 题目详情

【题目】设二次函数满足下列条件:当时,的最小值为0,且成立;当时,恒成立.

1)求的解析式;

2)若对,不等式恒成立、求实数的取值范围;

3)求最大的实数,使得存在实数,只要当时,就有成立.

【答案】1;(2;(39.

【解析】

1)由知函数图象的对称轴是,最小值为0,因此顶点为,这样函数解析式可写为,在不等式,从而有,由此可求得

2)不等式化为,当时,应有,当,应有.由此可得的取值范围;

(3)由,即的图象与直线切于点,因此把的图象向右平移,就有一部分满足,由此可找到的最大值.

解:(1)由题意,函数的顶点坐标为

解析式可设为

,∴,∴,∴

经检验,当时,恒成立,

∴函数解析式为.

2)不等式变形为:

,对称轴为

时,上单调增,∴,解得,∴.

时,,解得

.

综上所述.

(本小问也可用分离参数的方法来求

3)当时,相切于点,向右平移的过程中,

相交于两点在左),

由图可知,当点重合时,点的横坐标即为的最大值.

此时,得-4,∴.

消去得:,解得9

的最大值为9.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P-ABCD,底面ABCD为菱形,且∠DAB=60°,△PAB是边长为a的正三角形,且平面PAB⊥平面ABCD,已知点M是PD的中点.

(1)证明:PB∥平面AMC;

(2)求直线BD与平面AMC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为且抛物线的焦点恰好是椭圆的一个焦点.

(Ⅰ)求椭圆的方程

(Ⅱ)过点作直线与椭圆交于两点满足为坐标原点),求四边形面积的最大值并求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某运动员每次射击命中不低于8环的概率为,命中8环以下的概率为,现用随机模拟的方法估计该运动员三次射击中有两次命中不低于8环,一次命中8环以下的概率:先由计算器产生09之间取整数值的随机数,指定0、1、2、3、4、5表示命中不低于8环,6、7、8、9表示命中8环以下,再以每三个随机数为一组,代表三次射击的结果,产生了如下20组随机数:

据此估计,该运动员三次射击中有两次命中不低于8环,一次命中8环以下的概率为(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数若同时满足下列条件:

内单调递增或单调递减

存在区间使上的值域为;那么把叫闭函数.

1求闭函数符合条件的区间

2判断函数是否为闭函数并说明理由

3判断函数是否为闭函数若是闭函数求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数恰有3个零点,则实数的取值范围为( )

A. B. C. D.

【答案】A

【解析】,上单调递减.,上递增,那么零点个数至多有一个,不符合题意,.故需,,使得第一段有一个零点,.对于第二段, ,故需在区间有两个零点, ,上递增,上递减,所以,解得.综上所述,

点睛本小题主要考查函数的图象与性质,考查含有参数的分段函数零点问题的求解策略,考查了利用导数研究函数的单调区间,极值,最值等基本问题.其中用到了多种方法,首先对于第一段函数的分析利用了分离常数法,且直接看出函数的单调性.第二段函数利用的是导数来研究图像与性质.

型】单选题
束】
13

【题目】 满足约束条件,则的最大值为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家庭进行理财投资,根据长期收益率市场预测,投资债券等稳健型产品的收益与投资额成正比,投资股票等风险型产品的收益与投资额的算术平方根成正比.已知投资1万元时两类产品的收益分别为0.125万元和0.5万元。

(1)分别写出两类产品的收益与投资额的函数关系式;

(2)该家庭现有20万元资金,全部用于理财投资,怎样分配资金才能获得最大收益?其最大收益为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数,曲线在点处的切线与直线垂直,导函数的最小值为-12.

(1)求函数的解析式;

(2)用列表法求函数上的单调增区间、极值、最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是双曲线的左顶点、右焦点,过的直线的一条渐近线垂直且与另一条渐近线和轴分别交于两点.若,则的离心率是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案