【题目】某运动员每次射击命中不低于8环的概率为,命中8环以下的概率为,现用随机模拟的方法估计该运动员三次射击中有两次命中不低于8环,一次命中8环以下的概率:先由计算器产生0到9之间取整数值的随机数,指定0、1、2、3、4、5表示命中不低于8环,6、7、8、9表示命中8环以下,再以每三个随机数为一组,代表三次射击的结果,产生了如下20组随机数:
据此估计,该运动员三次射击中有两次命中不低于8环,一次命中8环以下的概率为( )
A. B.
C. D.
科目:高中数学 来源: 题型:
【题目】某渔业公司今年初用98万元购进一艘渔船进行捕捞,第一年需要各种费用12万元,从第二年开始包括维修费在内,每年所需费用均比上一年增加4万元,该船每年捕捞的总收入为50万元.
(1)该船捕捞第几年开始盈利?
(2)若该船捕捞年后,年平均盈利达到最大值,该渔业公司以24万元的价格将捕捞船卖出;求并求总的盈利值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列几个命题:①若方程的两个根异号,则实数;②函数是偶函数,但不是奇函数;③函数 在上是减函数,则实数a的取值范围是;④ 方程 的根满足,则m满足的范围,其中不正确的是( )
A.①B.②C.③D.④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、为抛物线上的两点,与的中点的纵坐标为4,直线的斜率为.
(1)求抛物线的方程;
(2)已知点,、为抛物线(除原点外)上的不同两点,直线、的斜率分别为,,且满足,记抛物线在、处的切线交于点,线段的中点为,若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥中, 为等边三角形,且平面平面, , , .
(Ⅰ)证明: ;
(Ⅱ)若棱锥的体积为,求该四棱锥的侧面积.
【答案】(Ⅰ)证明见解析;(Ⅱ) .
【解析】【试题分析】(I) 取的中点为,连接,.利用等腰三角形的性质和矩形的性质可证得,由此证得平面,故,故.(II) 可知是棱锥的高,利用体积公式求得,利用勾股定理和等腰三角形的性质求得的值,进而求得面积.
【试题解析】
证明:(Ⅰ)取的中点为,连接,,
∵为等边三角形,∴.
底面中,可得四边形为矩形,∴,
∵,∴平面,
∵平面,∴.
又,所以.
(Ⅱ)由面面,,
∴平面,所以为棱锥的高,
由,知,
,
∴.
由(Ⅰ)知,,∴.
.
由,可知平面,∴,
因此.
在中,,
取的中点,连结,则,,
∴ .
所以棱锥的侧面积为.
【题型】解答题
【结束】
20
【题目】已知圆经过椭圆: 的两个焦点和两个顶点,点, , 是椭圆上的两点,它们在轴两侧,且的平分线在轴上, .
(Ⅰ)求椭圆的方程;
(Ⅱ)证明:直线过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设二次函数满足下列条件:当时,的最小值为0,且成立;当时,恒成立.
(1)求的解析式;
(2)若对,不等式恒成立、求实数的取值范围;
(3)求最大的实数,使得存在实数,只要当时,就有成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为落实国家“精准扶贫”政策,让市民吃上放心蔬菜,某企业于2017年在其扶贫基地投入100万元研发资金,用于蔬菜的种植及开发,并计划今后十年内在此基础上,每年投入的资金比上一年增长.
(1)写出第年(2018年为第一年)该企业投入的资金数(万元)与的函数关系式,并指出函数的定义域
(2)该企业从第几年开始(2018年为第一年),每年投入的资金数将超过200万元?(参考数据,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某服装商场,当某一季节即将来临时,季节性服装的价格呈现上升趋势.设一种服装原定价为每件70元,并且每周(7天)每件涨价6元,5周后开始保持每件100元的价格平稳销售;10周后,当季节即将过去时,平均每周每件降价6元,直到16周末,该服装不再销售.
(1)试建立每件的销售价格(单位:元)与周次之间的函数解析式;
(2)若此服装每件每周进价(单位:元)与周次之间的关系为,,试问该服装第几周的每件销售利润最大?(每件销售利润=每件销售价格-每件进价)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com