精英家教网 > 高中数学 > 题目详情
若椭圆=1的焦点在x轴上,过点(1,)作圆x2+y2=1的切线,切点分别为A,B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是________.
=1
∵点(1,)在圆外,过点(1,)与圆相切的一条直线为x=1,且直线AB恰好经过椭圆的右焦点和上顶点,∴椭圆的右焦点为(1,0),即c=1,设点P(1,),连接OP,则OP⊥AB,∵kOP,∴kAB=-2.又直线AB过点(1,0),∴直线AB的方程为2x+y-2=0,∵点(0,b)在直线AB上,∴b=2,又c=1,∴a2=5,故椭圆方程是=1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆的焦点在轴上, 分别是椭圆的左、右焦点,点是椭圆在第一象限内的点,直线轴于点
(1)当时,
(1)若椭圆的离心率为,求椭圆的方程;
(2)当点P在直线上时,求直线的夹角;
(2) 当时,若总有,猜想:当变化时,点是否在某定直线上,若是写出该直线方程(不必求解过程).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点A(-
3
,0),B(
3
,0)
,动点P(x,y)满足:||AP|-|BP||=2;
(1)求动点P的轨迹方程;
(2)直线mx-y+1=0与动点P的轨迹只有一个交点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆x2+ky2=1的一个焦点是(0,2),则k的值为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且=2,则C的离心率为________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆=1(a>b>0)的左顶点为A,左、右焦点分别为F1,F2,D是它短轴上的一个端点,若3+2,则该椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的离心率是,则的值为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:.
(1)求椭圆C的离心率;
(2)设O为原点,若点A在直线,点B在椭圆C上,且,求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆+=1(a>b>0)的左、右焦点分别为F1,F2.点P(a,b)满足|PF2|=|F1F2|.
(1)求椭圆的离心率e;
(2)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆(x+1)2+=16相交于M,N两点,且|MN|=|AB|,求椭圆的方程.

查看答案和解析>>

同步练习册答案