精英家教网 > 高中数学 > 题目详情
11.在棱长为a的正方体ABCD-A1B1C1D1中,M是AA1中点,则点A到平面MBD的距离是$\frac{{\sqrt{6}}}{6}a$.

分析 利用等体积法,VA-MBD=VB-AMD.求出△MDB的面积,然后求距离即可.

解答 解:A到面MBD的距离由等积变形可得.
VA-MBD=VB-AMD.即:$\frac{1}{12}$a3=$\frac{1}{3}$×d×$\frac{1}{2}$×$\sqrt{2}$a×$\sqrt{\frac{5}{4}{a}^{2}-\frac{2}{4}{a}^{2}}$即易求d=$\frac{\sqrt{6}}{6}$a.
故答案为:$\frac{\sqrt{6}}{6}a$.

点评 本题考查点到平面的距离,等体积法求距离的方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.某影院有40排座位,每排有46个座位,一个报告会上坐满了听众,会后留下座号为20的所有听众进行座谈,这是运用了(  )
A.抽签法B.随机数表法C.系统抽样法D.放回抽样法

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在?ABCD中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{c}$,$\overrightarrow{BD}$=$\overrightarrow{d}$,则下列等式中不正确的是(  )
A.$\overrightarrow{a}+\overrightarrow{b}$=$\overrightarrow{c}$B.$\overrightarrow{a}$-$\overrightarrow{b}$=$\overrightarrow{d}$C.$\overrightarrow{b}$-$\overrightarrow{a}$=$\overrightarrow{d}$D.$\overrightarrow{c}$-$\overrightarrow{d}$=2$\overrightarrow{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.命题“存在x0∈(0,$\frac{π}{2}$),tan x0>sin x0”的否定是?x∈(0,$\frac{π}{2}$),tanx≤sinx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设x,y∈R+且xy-(x+y)=1,则(  )
A.$x+y≤2(\sqrt{2}+1)$B.$xy≤\sqrt{2}+1$C.$x+y≤{(\sqrt{2}+1)^2}$D.$xy≥{(\sqrt{2}+1)^2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在如图所示的矩形中随机投掷30000个点,则落在曲线C下方(曲线C为正态分布N(1,1)的正态曲线)的点的个数的估计值为(  )
A.4985B.8185C.9970D.24555

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如表所示:
月份i789101112
销售单价xi(元)99.51010.5118
销售量yi(件)111086514
(1)根据7至11月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程$\hat y=\hat bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,参考数据:$\sum_{i=1}^5{{x_i}{y_i}=392,}\sum_{i=1}^n{x_i^2=502.5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若曲线y=lnx的一条切线是直线$y=\frac{1}{2}x+b$,则实数b的值为-1+ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某出版社检验某册书的成本费(单位:元)与印刷数(单位:千册)之间的关系,经统计得到数据(表一)并对其作初步的处理,得到如图所示的散点图及一些统一量的值(表二).
表一
x123571011202530
y9.025.274.063.032.592.282.211.891.801.75
表二 
 $\overline{x}$ $\overline{y}$ $\overline{w}$ $\sum_{i=1}^{10}$(xi$-\overline{x}$)2 $\sum_{i=1}^{10}$(wi$-\overline{w}$)2 $\sum_{i=1}^{10}$(xi$-\overline{x}$)(yi$-\overline{y}$) $\sum_{i=1}^{10}$(wi$-\overline{w}$)(yi$-\overline{y}$)
 11.4 3.39 0.249 934.4 934.4-139.03 6.196
表中wi=$\frac{1}{{x}_{i}}$,$\overline{w}$=$\frac{1}{10}$$\sum_{i=1}^{10}$wi
(1)根据散点图可知更适宜作成本费与印刷册数的回归方程类型,试依据表中数据求出关于的回归方程(结果精确到0.01);
(2)从已有十组数据的前五组数据中任意抽取两组数据,求抽取的两组数据中有一组数据其预测值与实际值之差的绝对值超过0.02的概率.
附:对于一组数据(u1,v1),(u2,v2)…,(un,vn),其回归直线v=$\widehat{α}$+$\widehat{β}$u的斜估计分别为
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({u}_{i}-\overline{u})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({u}_{i}-\overline{u})^{2}}$,$\widehat{α}$=$\overline{v}$$-\widehat{β}$$\overline{u}$.

查看答案和解析>>

同步练习册答案