精英家教网 > 高中数学 > 题目详情
1.某影院有40排座位,每排有46个座位,一个报告会上坐满了听众,会后留下座号为20的所有听众进行座谈,这是运用了(  )
A.抽签法B.随机数表法C.系统抽样法D.放回抽样法

分析 根据抽样特点,总体中的个体数较多,且每个个体无明显差异,抽样间隔相等,由此得出结论.

解答 解:所述问题具有总体中的个体数较多,且每个个体无明显差异,
抽取的间隔相等,是系统抽样法.
故选:C.

点评 本题考查了系统抽样的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知i为虚数单位,复数z满足z•i=-1,则z2017=(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若${({x^3}-\frac{1}{x^2})^n}$二项展开式中的系数只有第6项最小,则展开式的常数项的值为(  )
A.-252B.-210C.210D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=|bx-2|+|bx-b|(b∈R).
(1)当b=1时,解不等式f(x)≥x+3;
(2)若不等式f(x)≥4对任意的实数x都成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,已知AB=2,cos∠ABC=$\frac{1}{3}$,若点D为AC的中点,且BD=$\frac{\sqrt{17}}{2}$,则sinA=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$f(α)=\frac{{sin({2π-α})cos({π+α})cos({\frac{π}{2}-α})}}{{sin({3π-α})sin({\frac{9π}{2}+α})}}+cos({2π-α})$.
(1)化简f(α);(2)若$f(α)=\frac{{\sqrt{10}}}{5}$,求$\frac{1}{sinα}+\frac{1}{cosα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知角α的终边上一点(x,3),且tanα=-2.
( I)求x的值;
( II)若tanθ=2,求$\frac{sinαcosα}{{1+{{cos}^2}α}}+\frac{sinθ-cosθ}{sinθ+cosθ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{2}$,点F1,F2分别是椭圆C的左,右焦点,以原点为圆心,椭圆C的短半轴为半径的圆与直线 x-y+$\sqrt{6}$=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点F2的直线l与椭圆C相交于点M,N两点,求使△F1MN面积最大时直线l的方程及△F1MN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在棱长为a的正方体ABCD-A1B1C1D1中,M是AA1中点,则点A到平面MBD的距离是$\frac{{\sqrt{6}}}{6}a$.

查看答案和解析>>

同步练习册答案