精英家教网 > 高中数学 > 题目详情
13.已知角α的终边上一点(x,3),且tanα=-2.
( I)求x的值;
( II)若tanθ=2,求$\frac{sinαcosα}{{1+{{cos}^2}α}}+\frac{sinθ-cosθ}{sinθ+cosθ}$的值.

分析 ( I)利用任意角的三角函数的定义,求得x的值.
( II)利用同角三角函数的基本关系,求得要求式子的值.

解答 解:( I)由三角函数的定义,得$tanα=\frac{3}{x}=-2$,解得$x=-\frac{3}{2}$.
( II)$\frac{sinαcosα}{{1+{{cos}^2}α}}+\frac{sinθ-cosθ}{sinθ+cosθ}=\frac{sinαcosα}{{{{sin}^2}α+2{{cos}^2}α}}+\frac{sinθ-cosθ}{sinθ+cosθ}$
=$\frac{tanα}{{tan}^{2}α+2}$+$\frac{tanθ-1}{tanθ+1}$=$\frac{-2}{4+2}$+$\frac{2-1}{2+1}$=0.

点评 本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设$\overrightarrow{a}$=$\overrightarrow{AB}$,$\overrightarrow{b}$=$\overrightarrow{AC}$
(1)若|$\overrightarrow{c}$|=3,$\overrightarrow{c}$∥$\overrightarrow{BC}$,求$\overrightarrow{c}$;
(2)若k$\overrightarrow{a}$+$\overrightarrow{b}$与k$\overrightarrow{a}$-2$\overrightarrow{b}$互相垂直,求k;
(3)若向量k$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$+k$\overrightarrow{b}$平行,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若M=${A}_{1}^{1}$+${A}_{2}^{2}$+${A}_{3}^{3}$+…+${A}_{2008}^{2008}$,则M的个位数字是(  )
A.3B.8C.0D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某影院有40排座位,每排有46个座位,一个报告会上坐满了听众,会后留下座号为20的所有听众进行座谈,这是运用了(  )
A.抽签法B.随机数表法C.系统抽样法D.放回抽样法

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数$f(x)=2sin({ωx+\frac{π}{3}}),({ω<0})$的最小正周期为π,求函数f(x)的单调递增区间和函数取得最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知tanα=2,求下列各式的值:
①tan($α+\frac{π}{4}$)               
 ②$\frac{sinα+cosα}{sinα-cosα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某同学利用暑假60天到一家商场勤工俭学.该商场向他提供了三种付酬:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天比前一天翻一番(即增加1倍),他应该选择哪种方式领取报酬呢?并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在?ABCD中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$,$\overrightarrow{AC}$=$\overrightarrow{c}$,$\overrightarrow{BD}$=$\overrightarrow{d}$,则下列等式中不正确的是(  )
A.$\overrightarrow{a}+\overrightarrow{b}$=$\overrightarrow{c}$B.$\overrightarrow{a}$-$\overrightarrow{b}$=$\overrightarrow{d}$C.$\overrightarrow{b}$-$\overrightarrow{a}$=$\overrightarrow{d}$D.$\overrightarrow{c}$-$\overrightarrow{d}$=2$\overrightarrow{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价x和销售量y之间的一组数据如表所示:
月份i789101112
销售单价xi(元)99.51010.5118
销售量yi(件)111086514
(1)根据7至11月份的数据,求出y关于x的回归直线方程;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?
(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).
参考公式:回归直线方程$\hat y=\hat bx+\hat a$,其中$b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n•\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,参考数据:$\sum_{i=1}^5{{x_i}{y_i}=392,}\sum_{i=1}^n{x_i^2=502.5}$.

查看答案和解析>>

同步练习册答案