分析 ( I)利用任意角的三角函数的定义,求得x的值.
( II)利用同角三角函数的基本关系,求得要求式子的值.
解答 解:( I)由三角函数的定义,得$tanα=\frac{3}{x}=-2$,解得$x=-\frac{3}{2}$.
( II)$\frac{sinαcosα}{{1+{{cos}^2}α}}+\frac{sinθ-cosθ}{sinθ+cosθ}=\frac{sinαcosα}{{{{sin}^2}α+2{{cos}^2}α}}+\frac{sinθ-cosθ}{sinθ+cosθ}$
=$\frac{tanα}{{tan}^{2}α+2}$+$\frac{tanθ-1}{tanθ+1}$=$\frac{-2}{4+2}$+$\frac{2-1}{2+1}$=0.
点评 本题主要考查任意角的三角函数的定义,同角三角函数的基本关系,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 8 | C. | 0 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 抽签法 | B. | 随机数表法 | C. | 系统抽样法 | D. | 放回抽样法 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}+\overrightarrow{b}$=$\overrightarrow{c}$ | B. | $\overrightarrow{a}$-$\overrightarrow{b}$=$\overrightarrow{d}$ | C. | $\overrightarrow{b}$-$\overrightarrow{a}$=$\overrightarrow{d}$ | D. | $\overrightarrow{c}$-$\overrightarrow{d}$=2$\overrightarrow{a}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 月份i | 7 | 8 | 9 | 10 | 11 | 12 |
| 销售单价xi(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
| 销售量yi(件) | 11 | 10 | 8 | 6 | 5 | 14 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com