精英家教网 > 高中数学 > 题目详情
已知函数
(1)若上单调递增,求的取值范围;
(2)若定义在区间D上的函数对于区间上的任意两个值总有以下不等式成立,则称函数为区间上的 “凹函数”.试证当时,为“凹函数”.
(1)(2)理解凹函数的定义 ,然后结合中点函数值与任意两点的函数值和的关系式作差法加以证明。

试题分析:解(1)由,得
函数为上单调函数. 若函数为上单调增函数,则上恒成立,即不等式上恒成立. 也即上恒成立.
,上述问题等价于,而为在上的减函数,则,于是为所求.
(2)证明:由

 

 ①
, ∴ ②
  ∴,
 ∴ ③ 
由①、②、③得
,从而由凹函数的定义可知函数为凹函数
点评:结合均值不等式的思想,以及函数的解析式来求解,属于中档题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

, 则的值为   (     )
A.8B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,,是否存在实数,使同时满足下列两个条件:(1)上是减函数,在上是增函数;(2)的最小值是,若存在,求出,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是连续的偶函数,且当时,是单调函数,则满足的所有之和为(    )
A.B.C.5D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数y=的单调区间为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数有三个极值点。
(I)证明:
(II)若存在实数c,使函数在区间上单调递减,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,已知为函数的极值点
(1)求函数上的单调区间,并说明理由.
(2)若曲线处的切线斜率为-4,且方程有两个不相等的负实根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)(某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少?)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分) 已知函数处有极值.
(Ⅰ)求实数值;
(Ⅱ)求函数的单调区间;
(Ⅲ)试问是否存在实数,使得不等式对任意 及
恒成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案