精英家教网 > 高中数学 > 题目详情
7.命题:“?x∈R,|x|≤0”的否定是?x∈R,|x|>0.

分析 直接利用特称命题的否定是全称命题写出结果即可.

解答 解:因为特称命题的否定是全称命题,所以命题:“?x∈R,|x|≤0”的否定是:?x>0,ex≥x+1.
故答案为:?x∈R,|x|>0.

点评 本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知f(x)=$\left\{\begin{array}{l}{x(x≥1)}\\{{t}^{2}(x<1)}\end{array}\right.$的值域为[1,+∞),则实数t的取值范围是t≥1或t≤-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设y=f(x)存在导数,且满足$\lim_{△→0}\frac{f(1-△x)-f(1)}{△x}$=1,则曲线y=f(x)在(1,f(1))处的切线倾斜角为(  )
A.30°B.135°C.45°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“a=1”是“直线ax+y+1=0与直线x-y+1=0垂直”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x-1.
(1)求f(2)+f(-1)的值;
(2)求f(x)在R上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知做变速直线运动的物体的速度为v(t)=$\sqrt{t}$,t∈[0,a],若位移量为18,则实数a=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)=ax2+bx (a,b为常数,且a≠0),满足条件f(1+x)=f(1-x),且方程f(x)=x有等根.
(1)求f(x)的解析式;
(2)设k>0,函数g(x)=kx+1,x∈[-2,1],若对于任意x1∈[-2,1],总存在x0∈[-2,1],使得g(x0)=f(x1)成立,求k的取值范围.
(3)是否存在实数m、n(m<n),使f(x)的定义域和值域分别为[m,n]和[3m,3n],如果存在,求出m、n的值,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A∪B发生的概率是(  )
A.$\frac{5}{12}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若0<b<a<1则下列结论不一定成立的是(  )
A.$\frac{1}{a}$<$\frac{1}{b}$B.$\sqrt{a}$>$\sqrt{b}$C.ab>baD.logba>logab

查看答案和解析>>

同步练习册答案