精英家教网 > 高中数学 > 题目详情
9.已知点M(1,m)(m>1),若点N(x,y)在不等式组$\left\{\begin{array}{l}y≥x\\ y≤mx\\ x+y≤1\end{array}\right.$表示的平面区域内,且$\overrightarrow{OM}•\overrightarrow{ON}$(O为
坐标原点)的最大值为2,则m=$1+\sqrt{2}$.

分析 利用向量的数量积化简表达式,得到目标函数,画出可行域,利用最优解求解即可.

解答 解:$1+\sqrt{2}$$\overrightarrow{OM}•\overrightarrow{ON}=x+my$,令x+my=z,
作出不等式组$\left\{\begin{array}{l}y≥x\\ y≤mx\\ x+y≤1\end{array}\right.$表示的可行域,由$\left\{\begin{array}{l}{y=mx}\\{x+y=1}\end{array}\right.$
解得A($\frac{1}{1+m}$,$\frac{m}{1+m}$),
当m≥0时,目标函数在A处取得最大值2.
分析知当$x=\frac{1}{1+m},y=\frac{m}{1+m}$时,zmax=2.
所以$\frac{1}{m+1}+m•\frac{m}{m+1}=2$,解之得$m=1+\sqrt{2}$或$m=1-\sqrt{2}$(舍去),
所以$m=1+\sqrt{2}$.
故答案为:$1+\sqrt{2}$.

点评 本题考查线性规划的简单应用,考查目标函数的最值的求法,值域可行域以及目标函数的最优解是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.由一个正方体截去一个三棱锥所得的几何体的直观图如图所示,则该几何体的三视图正确的是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知奇函数f(x)在[0,+∞)上是增函数,若f(lnx)<0,则(  )
A.$\frac{1}{e}$<x<1或x>1B.1<x<eC.0<x<e或x>eD.0<x<1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若圆柱的侧面展开图是边长为4cm的正方形,则圆柱的体积为5.1cm3(结果精确到0.1cm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知Tn为数列$\left\{{\frac{{{2^n}+1}}{2^n}}\right\}$的前n项和,若n>T10+1013恒成立,则整数n的最小值为(  )
A.1026B.1025C.1024D.1023

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x-a|+2|x+b|(a>0,b>0)的最小值为1.
(1)求a+b的值;
(2)若$m≤\frac{1}{a}+\frac{2}{b}$恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.将编号为1,2,3,4,5,6的六个小球放入编号为1,2,3,4,5,6的六个盒子,每个盒子放一个小球,若有且只有三个盒子的编号与放入的小球编号相同,则不同的放法总数是(  )
A.40B.60C.80D.100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设n∈N*,则$\sqrt{\underbrace{11…1}_{2n个}-\underbrace{22…2}_{n个}}$=(  )
A.$\underbrace{33…3}_{n个}$B.$\underbrace{33…3}_{2n-1个}$C.$\underbrace{33…3}_{{2^n}-1个}$D.$\underbrace{33…3}_{2n个}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=2cos2x-2sin(x+$\frac{3}{2}$π)cos(x-$\frac{π}{3}$)-$\frac{3}{2}$.
(1)求函数f(x)的单调递减区间;
(2)将函数f(x)的图象向右平移$\frac{π}{3}$个单位长度,再向上平移$\frac{\sqrt{3}}{2}$个单位长度,得到函数g(x)的图象,求当x∈[0,$\frac{π}{2}$]时,函数g(x)的值域.

查看答案和解析>>

同步练习册答案