精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
4
+
y2
3
=1
的两焦点为F1,F2,点P是椭圆内部的一点,则|PF1|+|PF2|的取值范围为______.
∵椭圆
x2
4
+
y2
3
=1
的两焦点为F1,F2
点P是椭圆内部的一点,
∴当点P在线段F1F2上时,
[|PF1|+|PF2|]min=|F1F2|=2
4-3
=2,
当点P在椭圆上时,
[|PF1|+|PF2|]max=2
4
=4.
∵点P是椭圆内部的一点,
∴|PF1|+|PF2|的取值范围是[2,4).
故答案为:[2,4)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆x2+
ky2
5
=1
的一个焦点是(0,2),那么实数k的值为(  )
A.-25B.25C.-1D.1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的焦点分别为F1,F2,若该椭圆上存在一点P使得∠F1PF2=60°,则椭圆离心率的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若两集合A=[0,3],B=[0,3],分别从集合A、B中各任取一个元素m、n,即满足m∈A,n∈B,记为(m,n),
(Ⅰ)若m∈Z,n∈Z,写出所有的(m,n)的取值情况,并求事件“方程
x2
m+1
+
y2
n+1
=1
所对应的曲线表示焦点在x轴上的椭圆”的概率;
(Ⅱ)求事件“方程
x2
m+1
+
y2
n+1
=1
所对应的曲线表示焦点在x轴上的椭圆,且长轴长大于短轴长的
2
倍”的概率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点A(-1,0)、B(1,0),P(x0,y0)是直线y=x+2上任意一点,以A、B为焦点的椭圆过点P.记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是(  )
A.e与x0一一对应
B.函数e(x0)无最小值,有最大值
C.函数e(x0)是增函数
D.函数e(x0)有最小值,无最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

点A、B分别是椭圆
x2
36
+
y2
20
=1长轴的左、右焦点,点F是椭圆的右焦点.点P在椭圆上,且位于x轴上方,PA⊥PF.
(1)求P点的坐标;
(2)设M是椭圆长轴AB上的一点,M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若椭圆上存在点P使
PF1
PF2
=0
,则|PF1|•|PF2|=(  )
A.b2B.2b2C.2bD.b

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
9
+
y2
2
=1的焦点为F1、F2,点P在椭圆上,若|PF1|=4,则|PF2|=______,∠F1PF2的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点A、B为椭圆
x2
4
+
y2
2
=1
长轴的两个端点,点M为该椭圆上位于第一象限内的任意一点,直线AM、BM分别与直线l:x=2
2
相交于点P、Q.
(1)若点P、Q关于x轴对称,求点M的坐标;
(2)证明:椭圆右焦点F在以线段PQ为直径的圆上.

查看答案和解析>>

同步练习册答案