精英家教网 > 高中数学 > 题目详情
已知点A(-1,0)、B(1,0),P(x0,y0)是直线y=x+2上任意一点,以A、B为焦点的椭圆过点P.记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是(  )
A.e与x0一一对应
B.函数e(x0)无最小值,有最大值
C.函数e(x0)是增函数
D.函数e(x0)有最小值,无最大值
由题意可得c=1,椭圆离心率e=
c
a
=
1
a
.故当a取最大值时e取最小,a取最小值时e取最大.
由椭圆的定义可得PA+PB=2a,a=
PA+PB
2

由于PA+PB 有最小值而没有最大值,即a有最小值而没有最大值,
故椭圆离心率e 有最大值而没有最小值,故B正确,且 D不正确.
当直线y=x+2和椭圆相交时,这两个交点到A、B两点的距离之和相等,
都等于2a,故这两个交点对应的离心率e相同,故A不正确.
由于当x0的取值趋于负无穷大时,PA+PB=2a趋于正无穷大;
而当当x0的取值趋于正无穷大时,PA+PB=2a也趋于正无穷大,故函数e(x0)不是增函数,故C不正确.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,已知AB=2c(常数c>0),以AB为直径的圆有一内接梯形ABCD,且ABCD,若椭圆以A,B为焦点,且过C,D两点,则当梯形ABCD的周长最大时,椭圆的离心率为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭圆离心率e的取值范围是(  )
A.
2
2
≤e<1
B.0<e<
2
2
C.
1
2
≤e<1
D.
1
2
≤e<
2
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)已知F1,F2是椭圆
x2
100
+
y2
64
=1
的焦点,P为椭圆上一点,且F1PF2=
π
3
,求△F1PF2的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
2
+y2=1
,则该椭圆的离心率为(  )
A.
1
2
B.
2
2
C.
3
3
D.
2
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆
x2
4
+
y2
3
=1
的两焦点为F1,F2,点P是椭圆内部的一点,则|PF1|+|PF2|的取值范围为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

过椭圆x2+2y2=2的焦点引一条倾斜角为45°的直线与椭圆交于A、B两点,椭圆的中心为O,则△AOB的面积为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设F1,F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点,若该椭圆上一点P满足|PF2|=|F1F2|,且以原点O为圆心,以b为半径的圆与直线PF1有公共点,则该椭圆离心率e的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆有一个焦点固定,并通过两个已知点,且该焦点到这两个定点不等距.则该椭圆另一个焦点的轨迹类型是(  )
A.椭圆型B.双曲线型
C.抛物线型D.非圆锥曲线型

查看答案和解析>>

同步练习册答案