精英家教网 > 高中数学 > 题目详情
过椭圆x2+2y2=2的焦点引一条倾斜角为45°的直线与椭圆交于A、B两点,椭圆的中心为O,则△AOB的面积为______.
把椭圆x2+2y2=2转化为标准方程
x2
2
+y2=1,
∵a2=1,b2=1,
∴椭圆x2+2y2=2的焦点F1(1,0),F2(-1,0),
∵过椭圆x2+2y2=2的焦点引一条倾斜角为45°的直线与椭圆交于A、B两点,
设直线AB过焦点F1(1,0),
∴直线AB的方程为y=x-1,
联立方程组
x2+2y2=2
y=x-1

整理,得4x2-4x=0,
解得
x1=0
y1=-1
x2=1
y2=0

∴|AB|=
(1-0)2+(0+1)2
=
2

∵原点O到直线AB:y=x-1的距离d=
|0-0-1|
2
=
2
2

∴S△AOB=
1
2
×
2
×
2
2
=
1
2

故答案为:
1
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆C的两个焦点分别是F1、F2,若C上存在点P满足|PF1|=2|F1F2|,则椭圆C的离心率e的取值范围是(  )
A.0<e≤
1
5
B.
1
3
≤e<1
C.
1
5
≤e≤
1
3
D.0<e≤
1
5
1
3
≤e<1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆C的左、右焦点坐标分别是(-
3
,0),(
3
,0)
,离心率是
3
2
,则椭圆C的方程为(  )
A.
x2
2
+y2=1
B.
x2
4
+y2=1
C.x2+
y2
2
=1
D.x2+
y2
4
=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点A(-1,0)、B(1,0),P(x0,y0)是直线y=x+2上任意一点,以A、B为焦点的椭圆过点P.记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是(  )
A.e与x0一一对应
B.函数e(x0)无最小值,有最大值
C.函数e(x0)是增函数
D.函数e(x0)有最小值,无最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
16
+
y2
4
=1
上的两点A、B关于直线2x-2y-3=0对称,则弦AB的中点坐标为(  )
A.(-1,
1
2
)
B.(
1
2
,-1)
C.(
1
2
,2)
D.(2,
1
2
)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,若椭圆上存在点P使
PF1
PF2
=0
,则|PF1|•|PF2|=(  )
A.b2B.2b2C.2bD.b

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆
x2
16
+
y2
25
=1
的焦点坐标是(  )
A.(±4,0)B.(0,±4)C.(±3,0)D.(0,±3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,P是椭圆C上的一点,若∠F1PF2=60°,且△PF1F2的面积为3
3
,则b=(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
9
+
y2
5
=1,过右焦点F作不垂直于x轴的弦交椭圆于B两点,AB的垂直平分线交x轴于N,则|NF|:|AB|等于(  )
A.
1
2
B.
1
3
C.
2
3
D.
1
4

查看答案和解析>>

同步练习册答案