精英家教网 > 高中数学 > 题目详情
椭圆有一个焦点固定,并通过两个已知点,且该焦点到这两个定点不等距.则该椭圆另一个焦点的轨迹类型是(  )
A.椭圆型B.双曲线型
C.抛物线型D.非圆锥曲线型
设椭圆的固定的焦点为F,另一个焦点为M,
设椭圆通过的两个已知点分别为A,B,
则由椭圆的定义知:
|AF|+|AM|=|BF|+|BM|,
∵焦点F到这两个定点A,B不等距,
∴||AF|-|BF||=||BM|-|AM||,
即||FA|-|FB||=||MB|-|MA||,
∴该椭圆另一个焦点M的轨迹类型是双曲线型.
故选:B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知点A(-1,0)、B(1,0),P(x0,y0)是直线y=x+2上任意一点,以A、B为焦点的椭圆过点P.记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是(  )
A.e与x0一一对应
B.函数e(x0)无最小值,有最大值
C.函数e(x0)是增函数
D.函数e(x0)有最小值,无最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的两个焦点,P是椭圆C上的一点,若∠F1PF2=60°,且△PF1F2的面积为3
3
,则b=(  )
A.2B.3C.6D.9

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是(  )
A.(
1
3
2
3
)
B.(
1
2
,1)
C.(
2
3
,1)
D.(
1
3
1
2
)∪(
1
2
,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P为椭圆
x2
5
+
y2
4
=1
上的点,F1,F2是其两个焦点,若∠F1PF2=30°,则△F1PF2的面积是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,点A、B为椭圆
x2
4
+
y2
2
=1
长轴的两个端点,点M为该椭圆上位于第一象限内的任意一点,直线AM、BM分别与直线l:x=2
2
相交于点P、Q.
(1)若点P、Q关于x轴对称,求点M的坐标;
(2)证明:椭圆右焦点F在以线段PQ为直径的圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
9
+
y2
5
=1,过右焦点F作不垂直于x轴的弦交椭圆于B两点,AB的垂直平分线交x轴于N,则|NF|:|AB|等于(  )
A.
1
2
B.
1
3
C.
2
3
D.
1
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆
x2
16
+
y2
9
=1的左、右焦点分别为F1、F2,点P在椭圆上.若P、F1、F2是一个直角三角形的三个顶点,则点P到x轴的距离为(  )
A.
9
5
B.3C.
9
7
7
D.
9
4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设A1,A2是椭圆=1的长轴两个端点,P1,P2是垂直于A1A2的弦的端点,则直线A1P1与A2P2交点的轨迹方程为(  )
A.=1B.=1
C.=1D.=1

查看答案和解析>>

同步练习册答案