精英家教网 > 高中数学 > 题目详情
11.cos17°sin43°+sin17°sin47°(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.一$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

分析 由诱导公式可得sin47°=cos43°,可得原式=cos17°sin43°+sin17°cos43°,由两角和的正弦公式可得.

解答 解:由诱导公式可得sin47°=sin(90°-43°)=cos43°,
∴cos17°sin43°+sin17°sin47°
=cos17°sin43°+sin17°cos43°
=sin(43°+17°)=sin60°=$\frac{\sqrt{3}}{2}$
故选:B.

点评 本题考查两角和的正弦公式,涉及诱导公式的应用,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x-alnx(a∈R).
(1)求函数f(x)的极值.
(2)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程与曲线y2=x所围成图形面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,若$\overrightarrow{AB}$•$\overrightarrow{AC}$=5,|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=4,则△ABC的面积的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知a∈(0,π),cos(a+$\frac{π}{3}$)=-$\frac{\sqrt{2}}{2}$,则tan2a=-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.证明:
(1)sinθ(1+cos2θ)=sin2θcosθ.
(2)$\frac{tanα+tanβ}{tanα-tanβ}$=$\frac{sin(α+β)}{sin(α-β)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知4sin2$\frac{A-B}{2}$+4sinAsinB=2+$\sqrt{2}$.
(1)求角C的大小;
(2)已知b=4,△ABC的面积为8,求边长c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示,△ACD是边长为1的等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于点E.则线段AE的长为$\sqrt{3}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设m,n表示两条不同直线,α,β表示两个不同的平面,下列说法正确的是(  )
A.若m∥β,β⊥α则m⊥αB.若m⊥n,n⊥β,β⊥α,则m⊥α
C.若m⊥α,m⊥n则n∥αD.若m⊥α,n?α,则m⊥n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.根据如图的程序语句,当输入X的值为2时,输出结果为6

查看答案和解析>>

同步练习册答案