精英家教网 > 高中数学 > 题目详情
已知椭圆C1:+=1(a>b>0)与双曲线C2:x2-=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则(  )
A.a2=B.a2=13
C.b2=D.b2=2
C
双曲线渐近线方程为y=±2x,
圆的方程为x2+y2=a2,
则|AB|=2a,不妨设y=2x与椭圆交于P、Q两点,且P在x轴上方,
则由已知|PQ|=|AB|=,
∴|OP|=,
∴P.
又∵点P在椭圆上,
+=1.①
又a2-b2=5,b2=a2-5,②
联立①②解得故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知A,B分别是椭圆C1:+=1的左、右顶点,P是椭圆上异于A,B的任意一点,Q是双曲线C2:-=1上异于A,B的任意一点,a>b>0.
(1)若P(,),Q(,1),求椭圆C1的方程;
(2)记直线AP,BP,AQ,BQ的斜率分别是k1,k2,k3,k4,求证:k1·k2+k3·k4为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上且过点,离心率是
(1)求椭圆的标准方程;
(2)直线过点且与椭圆交于两点,若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的左焦点为F,右顶点为A,动点M为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为,点M的横坐标为.

(1)求椭圆C的标准方程;
(2)设直线PA的斜率为k1,直线MA的斜率为k2,求k1·k2的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

离心率为的椭圆与双曲线有相同的焦点,且椭圆长轴的端点,短轴的端点,焦点到双曲线的一条渐近线的距离依次构成等差数列,则双曲线的离心率等于(      )
A    B.   C.    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C1:+=1(a>b>0)的右顶点为A(1,0),过C1的焦点且垂直长轴的弦长为1.

(1)求椭圆C1的方程;
(2)设点P在抛物线C2:y=x2+h(h∈R)上,C2在点P处的切线与C1交于点M,N.当线段AP的中点与MN的中点的横坐标相等时,求h的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点F1、F2分别是椭圆x2+2y2=2的左、右焦点,点P是该椭圆上的一个动点,则的最小值是    .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆mx2+y2=1的焦点在y轴上,长轴长是短轴长的3倍,则m=    .

查看答案和解析>>

同步练习册答案