分析 (1)根据an=$\left\{\begin{array}{l}{{S}_{1},n=1}\\{{S}_{n}-{S}_{n-1},n≥2}\end{array}\right.$计算an,利用定义判断;
(2)求出bn,使用裂项法求和.
解答 解:(1)n=1时,a1=S1=2,
n≥2时,an=Sn-Sn-1=n2+n-[(n-1)2+(n-1)]=2n,
显然当n=1时,上式也成立,
∴an=2n,
∴当n≥2时,an-an-1=2n-2(n-1)=2,
∴{an}是以2为首项,以2为公差的等差数列.
(2)bn=$\frac{1}{2n(2n+2)}$=$\frac{1}{4}$($\frac{1}{n}$-$\frac{1}{n+1}$),设数列{bn}的前n项和为Tn,
∴Tn=$\frac{1}{4}$(1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}-\frac{1}{n+1}$)=$\frac{1}{4}$(1-$\frac{1}{n+1}$)=$\frac{n}{4(n+1)}$.
点评 本题考查了等差关系的判断,通项公式的求法和裂项法求和,属于中档题.
科目:高中数学 来源: 题型:填空题
| 2 | 3 | 4 | 5 | 6 | 7 | … |
| 3 | 5 | 7 | 9 | 11 | 13 | … |
| 4 | 7 | 10 | 13 | 16 | 19 | … |
| 5 | 9 | 13 | 17 | 21 | 25 | … |
| 6 | 11 | 16 | 21 | 26 | 31 | … |
| 7 | 13 | 19 | 25 | 31 | 37 | … |
| … | … | … | … | … | … | … |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a≤-7或a≥12 | B. | a=-7或a=12 | C. | -7≤a≤12 | D. | -12≤a≤7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com