分析 (1)利用诱导公式和两角和与差公式化简即可求解角A的大小.
(2)利用二倍角公式化简sin2B+cos2C=1,可得sin2B=2sin2C,利用正余弦定理即可求解b,c的大小.即可求解△ABC的面积.
解答 解:(1)sin(A-$\frac{π}{6}$)-cos(A+$\frac{5π}{3}$)=sin(A-$\frac{π}{6}$)-cos(2π-A$-\frac{5π}{3}$)=sin(A-$\frac{π}{6}$)-cos(A+$\frac{π}{3}$)
=$\frac{\sqrt{3}}{2}$sinA-$\frac{1}{2}$cosA-$\frac{1}{2}$cosA-$\frac{\sqrt{3}}{2}$sinA=$\frac{\sqrt{2}}{2}$
即cosA=$-\frac{\sqrt{2}}{2}$,
∵0<A<π,
∴A=$\frac{3π}{4}$.
(2)由sin2B+cos2C=1,可得sin2B=2sin2C,
由正弦定理,得b2=2c2,即$b=\sqrt{2}c$.a=$\sqrt{5}$,
cosA=$-\frac{\sqrt{2}}{2}$=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$,
解得:c=1,b=$\sqrt{2}$
∴△ABC的面积S=$\frac{1}{2}$bcsinA=$\frac{1}{2}$.
点评 本题考查了诱导公式和两角和与差公式化简和计算能力,同时考查了二倍角公式化简以及正余弦定理的运用.属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-3,4] | B. | [1,4] | C. | [-3,0] | D. | [0,1] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 这些女学生的体重和身高具有非线性相关关系 | |
| B. | 这些女学生的体重差异有60%是由身高引起的 | |
| C. | 身高为170cm的学生体重一定为59.5kg | |
| D. | 这些女学生的身高每增加0.85cm,其体重约增加1kg |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com