精英家教网 > 高中数学 > 题目详情
11.探究函数y=4$\sqrt{x-1}$+3$\sqrt{5-x}$的最大值与最小值,如有最大值与最小值,一并求出何时取到最大值与最小值.

分析 由函数y=f(x)=4$\sqrt{x-1}$+3$\sqrt{5-x}$,可得x∈[1,5],利用导数研究其单调性极值与最值即可得出.

解答 解:由函数y=f(x)=4$\sqrt{x-1}$+3$\sqrt{5-x}$,可得x∈[1,5],
∴f′(x)=$\frac{4\sqrt{5-x}-3\sqrt{x-1}}{2\sqrt{(x-1)(5-x)}}$,
令f′(x)≤0,解得5≥x≥$\frac{89}{25}$,此时函数f(x)单调递增;
令f′(x)≥0,解得$\frac{89}{25}$≥x≥1,此时函数f(x)单调递减.
∴当x=$\frac{89}{25}$时,函数f(x)取得最小值f($\frac{89}{25}$)=$\frac{58}{5}$,
又f(1)=6,f(5)=8.∴函数的最大值为8.

点评 本题考查了利用导数研究其单调性极值与最值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.解关于x的不等式${log}_{a}^{2}$x-logax2-3>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,圆心为O的圆形纸片内有一个定点F(点F与点O不重合),点M在圆周上,现把纸片折叠让点M与点F重合,然后抹平纸片,折痕为CD,设CD与OM交于点P,当点M在圆周上运动时,点P形成的轨迹是(  )
A.B.椭圆C.双曲线D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.数列{an}中,Sn=1+kan(k≠0,k≠1).
(1)证明:数列{an}为等比数列;
(2)求数列{an}的通项公式;
(3)当k=-1时,求和a12+a22+…+an2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设S是由满足下列条件的实数所构成的集合.
①1∉S;②若a∈S,则$\frac{1}{1-a}$∈S,请解答下列问题.
(1)若2∈S,则S中必有另外两个元素,求出这两个元素;
(2)求证:若a∈S,则1-$\frac{1}{a}$∈S.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.利用随机模拟的方法近似计算图形的面积:y=x2+1与y=6所围区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA.
(1)求B的大小;
(2)若a=3$\sqrt{3}$,c=5,求b和三角形ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在多项式f(x)=Cn1(x-1)+Cn2(x-1)2+Cn3(x-1)3+…+Cnn(x-1)n(n≥10)的展开式中,含x6项的系数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知向量$\overrightarrow{a}$=(3,4),写出与$\overrightarrow{a}$平行的单位向量$(\frac{3}{5},\frac{4}{5})$(写一个即可)

查看答案和解析>>

同步练习册答案