精英家教网 > 高中数学 > 题目详情
15.在△ABC中,角A,B,C所对的边分别为a,b,c.若a=1,B=$\frac{π}{4}$,△ABC的面积S=2,则$\frac{b}{sinB}$的值为$5\sqrt{2}$.

分析 利用三角形面积计算公式可得c,利用余弦定理可得b,即可得出.

解答 解:∵S=2=$\frac{1}{2}×1×c$×sin$\frac{π}{4}$,解得c=4$\sqrt{2}$,
由余弦定理可得:b2=1+32-2×1×4$\sqrt{2}$×$cos\frac{π}{4}$=25,
解得b=5.
∴$\frac{b}{sinB}$=5$\sqrt{2}$.
故答案为:$5\sqrt{2}$.

点评 本题考查了余弦定理三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.设p:实数x满足x2-4ax+3a2<0,其中a<0,q:实数x满足x2-x-6≤0或x2+2x-8>0,且非p是非q的必要不充分条件,则实数a的范围是[-$\frac{2}{3}$,0)∪(-∞,-4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=2cos(2x+$\frac{π}{3}$)的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{1}{2}$πC.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(Ⅰ)已知a和b是任意非零实数满足|2a+b|+|2a-b|≥λ|a|,求实数λ的最大值.
(Ⅱ)若不等式|2x+1|-|x+1|>k(x-1)-$\frac{1}{4}$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=asinx•cosx-$\sqrt{3}$acos2x+$\frac{{\sqrt{3}}}{2}$a+b(a>0).
(Ⅰ)写出函数的单调递增区间;
(Ⅱ)设x∈[0,$\frac{π}{2}$],f(x)的最小值是-$\sqrt{3}$,最大值是2,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.圆心为(3,1),半径为5的圆的标准方程是(  )
A.(x+3)2+(y+1)2=5B.(x+3)2+(y+1)2=25C.(x-3)2+(y-1)2=5D.(x-3)2+(y-1)2=25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知圆O:x2+y2=r2(r>0)及圆上的点A(0,-r),过点A的直线l交圆于另一点B,交x轴于点C,若OC=BC,则直线l的斜率为±$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=sin2ωx+$\sqrt{3}$sinωxsin(ωx+$\frac{π}{2}}$)(ω>0)的最小正周期为π,则y=f(x)的对称中心为($\frac{π}{12}+\frac{kπ}{2}$,$\frac{1}{2}$),k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在三角形ABC中,角A,B,C所对的边分别为a,b,c,且$\frac{ac}{{{b^2}-{a^2}-{c^2}}}=\frac{sinAcosA}{{cos({A+C})}}$.
(1)求角A;
(2)若a=$\sqrt{2}$,求bc的取值范围.

查看答案和解析>>

同步练习册答案