精英家教网 > 高中数学 > 题目详情
2.试证:对任意大于1的正整数n有$\frac{1}{3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$<$\frac{1}{2}$.

分析 利用裂项法求出左边的和,即可证明结论.

解答 证明:左边=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)<$\frac{1}{2}$,
∴$\frac{1}{3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{(2n-1)(2n+1)}$<$\frac{1}{2}$.

点评 本题考查不等式的证明,考查裂项法求和,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)满足f(x+2)=f(x),当x∈[-1,1)时,f(x)=x,则方程f(x)=lgx的根的个数是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设不等式组$\left\{\begin{array}{l}x≥0\\ y≥0\\ y≤-kx+4k\end{array}\right.$在平面直角坐标系中所表示的区域的面积为S,则当k>1时,$\frac{kS}{k-1}$的最小值为(  )
A.16B.32C.48D.56

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知x∈[$\frac{π}{2}$,π],且sin(2x-$\frac{π}{2}$)=$\frac{1}{3}$,则cos2x=-$\frac{1}{3}$,sinx=$\frac{\sqrt{6}}{3}$,tanx=-$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|-l≤x<1},B={x|x2-x≤0},则A∩B等于(  )
A.{x|0≤x<1}B.{x|0<x≤l}C.{x|0<x<1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“a=2”是“{1,a}⊆{1,2,3}”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在?ABCD中,点E是AB的中点,点F在BD上,且BF=$\frac{1}{3}$BD,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{EC}$,$\overrightarrow{EF}$;
(2)求证:E,F,C三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列图形均表示两个相交平面,其中画法正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知A={x|x=a+b$\sqrt{2}$,a,b∈N}.若集合C={x|x=x1-x2,x1、x2∈A},当x=a+b$\sqrt{2}$∈C(a、b互质)时.必有$\frac{1}{x}$∈C,则a.b满足的关系式a2-2b2=1.

查看答案和解析>>

同步练习册答案