精英家教网 > 高中数学 > 题目详情
f(x)=2cos2ωx+
3
sin2ωx
(ω>0,x∈R)的最小正周期为π,
(1)求ω的值;
(2)若A是△ABC的内角,且f(A)=2,求角A的值.
分析:(1)f(x)解析式利用二倍角的正弦函数公式化简,再利用两角和与差的正弦函数公式及特殊角的三角函数值化简为一个角的正弦函数,根据周期为π即可求出ω的值;
(2)根据f(A)=2,利用特殊角的三角函数值即可求出A的度数.
解答:解:(1)f(x)=1+cos2ωx+
3
sin2ωx=1+2sin(2ωx+
π
6
),
∵T=π,∴ω=1;
(2)∵f(A)=2,∴1+2sin(2A+
π
6
)=2,即sin(2A+
π
6
)=
1
2

∵A为三角形的内角,∴
π
6
<2A+
π
6
13π
6

∴2A+
π
6
=
6

则A=
π
3
点评:此题考查了二倍角的正弦函数公式,两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=
a
b
.其中向量
a
=(
2
sinωx,
2
cosωx+1)
b
=(
2
cosωx,
2
cosωx-1)

(1)当ω=1,x∈(0,
π
2
)
时,求函数f(x)的值域;
(2)当ω=-1时,求函数f(x)的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•广东)已知函数f(x)=2cos(ωx+
π
6
)
(其中ω>0,x∈R)的最小正周期为10π.
(1)求ω的值;
(2)设α,β∈[0,
π
2
]
f(5α+
5
3
π)=-
6
5
f(5β-
5
6
π)=
16
17
,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cos(ωx+
π
6
)
(其中ω>0x∈R)的最小正周期为10π.
(1)求ω的值;  
(2)设α、β∈[0,
π
2
]
f(5α+
5
3
π)=-
6
5
f(5β-
5
6
π)=
16
17
,求cosαcosβ-sinαsinβ的值.
(3)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(2sinx,
2
cos(x-
π
2
)+1)
b
=(cosx,
2
cos(x-
π
2
)-1)
,设f(x)=
a
b

(1)求f(x)的最小正周期和单调增区间;
(2)在△ABC中,a,b,c分别为A,B,C的对边,且a=2,f(A)=1,b=
6
,求边c.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知=(cos+sin,-sin),=(cos-sin,2cos).

 (1)设f(x)=·,求f(x)的最小正周期和单调递减区间;

(2)设有不相等的两个实数x1,x2∈,且f(x1)=f(x2)=1,求x1+x2的值.

查看答案和解析>>

同步练习册答案