精英家教网 > 高中数学 > 题目详情
10.六位同学站成一排照毕业相,甲同学和乙同学要求相邻,并且都不和丙丁相邻,则一共有多种排法(  )
A.72B.144C.180D.288

分析 先把甲乙捆绑在一起看做一个复合元素,分这个复合元素在两端,和这个复合元素在不在两端,根据分类计数原理可得

解答 解:先把甲乙捆绑在一起看做一个复合元素,
若这个复合元素在两端,从不包含丙丁的2人选1人,和复合元素相邻,剩余的全排即可,故有A22A22A21A33=48种,
若这个复合元素在不在两端,从不包含丙丁的2人选2人,分别放在这个复合元素两边,这4人捆绑在一起组成一个新的复合元素,再和丙丁全排即可,
故有A22A22A33=24种,
根据分类计数原理可得,共有48+24=72种,
故选:A

点评 本题主要考查排列组合、两个基本原理的实际应用,相邻的问题用捆绑法,不相邻用插空,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.过点P(2,3)作圆(x-1)2+y2=1的两条切线,与圆相切于A,B,则直线AB的方程为x+3y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$y=\sqrt{\frac{x-3}{2-x}}$的定义域是(  )
A.{x|2≤x≤3}B.{x|x≤2或x≥3}C.{x|2<x≤3}D.{x|x<2或x≥3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}中,a1=1,a2=4,a3=10.若{an+1-an}是等比数列,则$\sum_{i=1}^{10}{a}_{i}$=3×2n-2n-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知命题p:?x<0,x3<0,那么¬p是(  )
A.?x<0,x3≥0B.?x0>0,x03≤0C.?x0<0,x03≥0D.?x>0,x3≥0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设集合A={x∈N|lgx≤1},B={x|x2<16},则A∩B=(  )
A.(-∞,4)B.(0,4)C.{0,1,2,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=xlnx,e为自然对数的底数.
(Ⅰ)求曲线y=f(x)在x=e-3处的切线方程;
(Ⅱ)关于x的不等式f(x)≥λ(x-1)在(0,+∞)恒成立,求实数λ的取值范围.
(Ⅲ)关于x的方程f(x)=a有两个实根x1,x2,求证:|x1-x2|<$\frac{3}{2}$a+1+$\frac{1}{2{e}^{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2|x+a|+|x-$\frac{1}{a}$|(a≠0).
(1)当a=-1时,解不等式f(x)<4;
(2)求函数g(x)=f(x)+f(-x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数$f(x)=\left\{\begin{array}{l}{x^3}-{x^2},x>0\\ ax{e^x},x≤0\end{array}\right.$,其中a>0.
(1)若直线y=m与函数f(x)的图象在(0,2]上只有一个交点,求m的取值范围;
(2)若f(x)≥-a对x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案