精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2ln|x|,
(Ⅰ)判断函数f(x)的奇偶性;
(Ⅱ)求函数f(x)的单调区间.
分析:(Ⅰ)先判断函数的定义域是否关于原点对称,再利用偶函数的定义证明f(-x)=f(x)即可得证;
(Ⅱ)由于函数f(x)为偶函数,故先研究函数当x>0时的单调区间,再利用对称性得函数定义域上的单调性,当x>0时,先求函数的导函数,再解不等式即可得函数的单调区间
解答:解:(Ⅰ)函数f(x)的定义域为{x|x∈R且X≠0}
f(-x)=(-x)2ln|-x|=)=x2ln|x|=f(x)
∴f(x)为偶函数   
(Ⅱ)当x>0时,f′(x)=2x•lnx+x2
1
x
=x(2lnx+1)
若0<x<e-
1
2
,则f′(x)<0,f(x)递减;
若x>e-
1
2
,则f′(x)>0,f(x)递增; 再由f(x)是偶函数,
得f(x)的递增区间是(-∞,-e-
1
2
)和(e-
1
2
,+∞);
递减区间是(-e-
1
2
,0)和(0,e-
1
2
).
点评:本题主要考查了函数奇偶性的定义及其判断方法,求函数单调区间的方法:导数法和对称性法,利用对称性由局部研究整体的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案