精英家教网 > 高中数学 > 题目详情
17.已知曲线$\left\{\begin{array}{l}{x=3cosθ}\\{y=5sinθ}\end{array}\right.$(θ为参数且0≤θ≤$\frac{π}{2}$)上一点P与原点O的距离为$\sqrt{13}$,则P点坐标为($\frac{3\sqrt{3}}{2}$,$\frac{5}{2}$).

分析 利用两点间的距离公式列出方程解出sinθ,cosθ,代入参数方程得出P点的坐标.

解答 解:∵|PO|=$\sqrt{13}$,
∴9cos2θ+25sin2θ=13,即9+16sin2θ=13,
∴sin2θ=$\frac{1}{4}$.
∴0≤θ≤$\frac{π}{2}$,
∴sinθ=$\frac{1}{2}$,cosθ=$\frac{\sqrt{3}}{2}$.
∴x=3cosθ=$\frac{3\sqrt{3}}{2}$,y=5sinθ=$\frac{5}{2}$.
故答案为($\frac{3\sqrt{3}}{2}$,$\frac{5}{2}$).

点评 本题考查了参数方程的应用,距离公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2cos2$\frac{A}{2}$=$\frac{\sqrt{3}}{3}$sinA,sin(B-C)=4cosBsinC,则$\frac{b}{c}$=1+$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知圆C的圆心为点C(0,3),点R($\sqrt{3}$,2)在圆C上,直线l过点A(-1,0)且与圆C相交P,Q两点,点M是线段PQ的中点.
(1)求圆C的方程:
(2)若$\overrightarrow{AM}$•$\overrightarrow{AC}$=9,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点P(a,b),Q(c,d),则方程$\left\{\begin{array}{l}{x=\frac{a+ct}{1+t}}\\{y=\frac{b+dt}{1+t}}\end{array}\right.$(t为参数)表示的曲线是(  )
A.直线PQB.线段PQC.除去P点的直线PQD.除去Q点的直线PQ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.根据下面三视图,可以知到至少需要12块小正方体.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.存在函数f(x)满足对任意的x∈R都有(  )
A.f(|x|)=x+1B.f(x2+4x)=|x+2|C.f(2x2+1)=xD.f(cosx)=$\sqrt{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.一种计算装置,有一数据入口A和一个运算出口B,按照某种运算程序:①当从A口输入自然数1时,从B口得到$\frac{1}{3}$,记为$f(1)=\frac{1}{3}$;②当从A口输入自然数n(n≥2)时,在B口得到的结果f(n)是前一个结果f(n-1)的$\frac{{2({n-1})-1}}{{2({n-1})+3}}$倍.
(Ⅰ)当从A口分别输入自然数2,3,4时,从B口分别得到什么数?
(Ⅱ)根据(Ⅰ)试猜想f(n)的关系式,并用数学归纳法证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.一个袋子中有k个红球,4个绿球,2个黄球,这些球除颜色外其他完全相同.从中一次随机取出2个球,每取得1个红球记1分、取得1个绿球记2分、取得1个黄球记5分,用随机变量X表示取到2个球的总得分,已知总得分是2分的概率为$\frac{1}{12}$.
(Ⅰ)求袋子中红球的个数;
(Ⅱ)求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距是实轴长的2倍.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为x2=16y.

查看答案和解析>>

同步练习册答案