精英家教网 > 高中数学 > 题目详情
已知函数f(x)=xk+b(常数k,b∈R)的图象过点(4,2)、(16,4)两点.
(1)求f(x)的解析式;
(2)记f(x)的反函数为g(x),解不等式g(x)+g(x-1)<2|x-2|;
(3)记f(x)的反函数为g(x),若不等式g(x)>ax-1恒成立,求实数a的取值范围.
分析:(1)将(4,2)、(16,4)两点坐标代入函数f(x)=xk+b中,即可求出k、b的值,进而求得函数f(x)的解析式;
(2)根据前面求得的f(x)的解析式和题中已知条件可知函数g(x)的解析式,再解不等式
(3)不等式g(x)>ax-1恒成立等价于不等式x2>ax-1在x∈[0,+∞)上恒成立,再进行分类讨论.
解答:解:(1)
2=4k+b
4=16k+b
⇒b=0,k=
1
2
⇒f(x)=
x
---------------(4分)
(2)g(x)=x2(x≥0)---------------(6分)g(x)+g(x-1)<2|x-2|?
x-1≥0
x2+(x-1)2<2|x-2
---------------(8分)⇒x∈[1,
6
2
)
---------------(10分)
(3)g(x)=x2(x≥0),不等式g(x)>ax-1恒成立等价于
不等式x2>ax-1在x∈[0,+∞)上恒成立---------------(12分)
当x=0时,不等式x2>ax-1恒成立;a∈R---------------(14分)
当x>0时,不等式a<x+
1
x
恒成立,a<(x+
1
x
)min=2
---------------(17分)
综上,实数a的取值范围为a∈(-∞,2)---------------(18分)
点评:本题主要考查了函数解析式的求法,函数的在区间上的恒成立问题常转化为求函数的最值,常用分离参数法.属于中档题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案