已知函数f(x)对任意实数x均有f(x)=kf(x+2),其中常数k为负数,且f (x)在区间[0,2]上有表达式f(x)=x(x-2).
(1)求f(-1),f(2.5)的值;
(2)写出f(x)在[-3,3]上的表达式,并讨论函数f(x)在[-3,3]上的单调性;
(3)求出f(x)在[-3,3]上的最小值与最大值,并求出相应的自变量的取值.
(1)f(-1)=-k f(2.5)=-![]()
(2) f(x)=
f(x)在[-3,-1]与[1,3]上为增函数,在[-1,1]上为减函数
(3) ①k<-1时,f(x)在x=-3处取得最小值f(-3)=-k2,
在x=-1处取得最大值f(-1)=-k.
②k=-1时,f(x)在x=-3与x=1处取得最小值f(-3)=f(1)=-1,
在x=-1与x=3处取得最大值f(-1)=f(3)=1.
③-1<k<0时,f(x)在x=1处取得最小值f(1)=-1,在x=3处取得最大值f(3)=-
.
【解析】
解:(1)f(-1)=kf(1)=-k,
∵f(0.5)=kf(2.5),
∴f(2.5)=
f(0.5)=
(0.5-2)×0.5=-
.
(2)∵对任意实数x,f(x)=kf(x+2),
∴f(x-2)=kf(x),
∴f(x)=
f(x-2),
当-2≤x<0时,0≤x+2<2,f(x)=kf(x+2)=kx(x+2);
当-3≤x<-2时,-1≤x+2<0,
f(x)=kf(x+2)=k2(x+2)(x+4);
当2<x≤3时,0<x-2≤1,
f(x)=
f(x-2)=
(x-2)(x-4).
故f(x)=![]()
∵k<0,
∴f(x)在[-3,-1]与[1,3]上为增函数,在[-1,1]上为减函数.
(3)由函数f(x)在[-3,3]上的单调性可知,
f(x)在x=-3或x=1处取得最小值f(-3)=-k2或f(1)=-1,
而在x=-1或x=3处取得最大值f(-1)=-k或f(3)=-
.
故有①k<-1时,f(x)在x=-3处取得最小值f(-3)=-k2,
在x=-1处取得最大值f(-1)=-k.
②k=-1时,f(x)在x=-3与x=1处取得最小值f(-3)=f(1)=-1,
在x=-1与x=3处取得最大值f(-1)=f(3)=1.
③-1<k<0时,f(x)在x=1处取得最小值f(1)=-1,在x=3处取得最大值f(3)=-
.
科目:高中数学 来源: 题型:
| ab |
查看答案和解析>>
科目:高中数学 来源:北京市海淀区2012届高三下学期期中练习数学文科试题 题型:022
已知函数f(x)=
则f(f(x))=________;
下面三个命题中,所有真命题的序号是________.
①函数f(x)是偶函数;
②任取一个不为零的有理数T,f(x+T)=f(x)对x∈R恒成立;
③存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))使得△ABC为等边三角形.
查看答案和解析>>
科目:高中数学 来源:2010年普通高等学校招生全国统一考试、理科数学(上海卷) 题型:044
若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.
(1)若x2-1比1远离0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab
;
(3)已知函数f(x)的定义域
.任取x∈D,f(x)等于sinx和cosx中远离0的那个值.写出函数f(x)的解析式,并指出它的基本性质(结论不要求证明).
查看答案和解析>>
科目:高中数学 来源:2010年全国普通高等学校招生统一考试、文科数学(上海卷) 题型:044
若实数x、y、m满足|x-m|<|y-m|,则称x比y接近m.
(1)若x2-1比3接近0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a2b+ab2比a3+b3接近2ab
;
(3)已知函数f(x)的定义域D={x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那个值.写出函数f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).
查看答案和解析>>
科目:高中数学 来源:上海高考真题 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com