精英家教网 > 高中数学 > 题目详情
设P(x0,y0)是坐标平面上一动点,向量
a
=(x0,y0),向量
b
=(y0,2y0-x0),
(1)求证:当点P在x轴上运动时,总有
a
b

(2)若P点运动时,总有
a
b
,求证:P点总在一条定直线上.
考点:平面向量共线(平行)的坐标表示
专题:平面向量及应用
分析:(1)当点P在x轴上运动时,y0=0,只要证明
a
b
=0即可;
(2)利用向量共线定理可得x0-y0=0,反之也成立.
解答: 证明:(1)当点P在x轴上运动时,y0=0,
a
b
=x0y0+2
y
2
0
-x0y0
=0,
a
b

(2)由
a
b
2x0y0-
x
2
0
=
y
2
0

x
2
0
-2x0y0+
y
2
0
=0

(x0-y0)2=0
即x0-y0=0,
反之当x0-y0=0时2x0y0-
x
2
0
=
y
2
0
,知
a
b

故P点总在定直线x-y=0上运动.
点评:本题考查了向量共线定理、向量垂直与数量积的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(1,1),
b
=(1,-1),
c
=(-1,2),设
c
a
b
,则(  )
A、λ=-
1
2
,μ=
3
2
B、λ=
1
2
,μ=-
3
2
C、λ=
3
2
,μ=-
1
2
D、λ=-
3
2
,μ=
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC.中,PA⊥底面ABC.AC⊥BC,AC=BC=PA=2.求三棱锥P-ABC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2sinx,2sinx),
b
=(sinx,cosx),函数f(x)=
a
b

(1)求f(x)的单调区间;
(2)请说出f(x)的图象是由y=sinx的图象经过怎样的变换得到的(说清每一步的变换方法);
(3)当x∈[0,
π
2
]时,求f(x)的最大值及取得最大值时的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-ax+
1-a
x
-1(a∈R).
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设g(x)=x2-2bx+4.当a=
1
4
时,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求实数b取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=Asin(ωx+φ)的图象如图所示,其中A>0,ω>0,|φ|<
π
2

(1)求出A、ω、φ的值;
(2)由函数g(x)=cosx经过平移变换可否得到函数f(x)的图象?若能,平移的最短距离是多少个单位?否则,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(m2-8m+15)+(m2-5m+4)i(m∈R).
(1)若复数z<0,求实数m的值;
(2)若复数z在复平面内对应的点位于第四象限,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
a
=(
3
sinx,m+cosx),
b
=(cosx,-m+cosx),且f(x)=
a
b

(1)求函数f(x)的最小正周期
(2)当x∈[-
π
6
π
3
]
时,f(x)的最小值是-4,求此时m的值和函数f(x)的最大值,并求出相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:|x+
1
x
|≥2.

查看答案和解析>>

同步练习册答案