精英家教网 > 高中数学 > 题目详情
设{an}是公差大于零的等差数列,已知a1=2,a3=a22-10.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设{bn}是以1为首项,以3为公比的等比数列,求数列{an-bn}的前n项和Sn
考点:数列的求和,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件利用等差数列通项公式求出差,由此能求出an=2n.
(Ⅱ)由已知条件得bn=3n-1,an-bn=2n-3n-1,由此能求出数列{an-bn}的前n项和Sn
解答: 解:(Ⅰ)∵{an}是公差大于零的等差数列,a1=2,a3=a22-10.
∴2+2d=(2+d)2-10,
解得d=2,或d=-4(舍),
∴an=2+(n-1)×2=2n.
(Ⅱ)∵{bn}是以1为首项,以3为公比的等比数列,
bn=3n-1
∴an-bn=2n-3n-1
∴Sn=2(1+2+3+…+n)-(1+3+32+…+3n-1
=2×
n(n+1)
2
-
1-3n
1-3

=n2+n+
1
2
-
3n
2
点评:本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意分组求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知直三棱柱ABC-A1B1C1中,AB=BC=2,AC=2
2
,AA=1,D为BC的中点.
(1)求证:A1B∥面ADC1
(2)求三棱锥B-AC1D的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某射击队员每次射击击中目标靶的环数都在6环以上(含6环),据统计数据绘制得到的频率分布条形图如图所示,其中a,b,c依次构成公差为0.1的等差数列,若视频率为概率,且该队员每次射击相互独立,试解答下列问题:
(Ⅰ)求a,b,c的值,并求该队员射击一次,击中目标靶的环数ξ的分布列和数学期望Eξ;
(Ⅱ)若该射击队员在10次的射击中,击中9环以上(含9环)的次数为k的概率为P(X=k),试探究:当k为何值时,P(X=k)取得最大值?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的两个焦点分别为F1(-1,0)、F2(1,0),短轴长为2.
(1)求椭圆C的方程;
(2)过点F2的直线l与椭圆C相交于P,Q两点,且
F1P
F1Q
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,BC=2
2
,O为BD的中点.
(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个袋中有4个大小之地都相同的小球,其中红球1个,白球2个,黑球1个,现从袋中有放回的取球,每次随机取一个,连续取两次.
(1)设(i,j)表示先后两次所取到的球,试写出所有可能的抽取结果;
(2)求连续两次都取到白球的概率;
(3)若取到红球记2分,取到白球记1分,取到黑球记0分,求连续两次球所得分数大于2分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

学校订集了21000本学生用书,它们分别来自一、二、三年级,现在采用分层抽样的方法对这批书进行检查.已知从一、二、三年级抽取的本数分别为x,y,z,且满足2y=x+z,则这批书中二年级有
 
本.

查看答案和解析>>

科目:高中数学 来源: 题型:

在乒乓球比赛中,甲与乙以“五局三胜”制进行比赛,根据以往比赛情况,甲在每一局胜乙的概率均为
3
5
.已知比赛中,乙先赢了第一局,求:
(1)甲在这种情况下取胜的概率;
(2)设比赛局数为X,求X的分布列及数学期望(均用分数作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的数列{an},其前n项和为Sn,且满足4Sn=(an+1)2
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{bn}满足:b1=3,bn+1=abn,记cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案