精英家教网 > 高中数学 > 题目详情
(13分) 如图,直三棱柱中, ,.
(Ⅰ)证明:
(Ⅱ)求二面角的正切值.
 
(Ⅰ)证明见解析;(Ⅱ)二面角的正切值为
(I)证明即可.
(II)过A作于M,连接BM,则易证就是二面角的平面角,然后解求角即可.
证明(Ⅰ)
∵三棱柱为直三棱柱
…………………………………1

由正弦定理得……………………….3
……………………………………4
,又
…………………………………….5
又因为
………………………………………….6
(Ⅱ)作,连,……………………7
由三垂线定理可得……………………………………..9
所以∠ADB为二面角的平面角…………………….10
中,,………………………..11
中, ,
∴二面角的正切值为……………………………13
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点

(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若PA,求证:平面ADE⊥平面PBC

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°.
(1)求证:PC⊥BC;
(2)求点A到平面PBC的距离.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于直线a,b,c以及平面M,N,给出下面命题:
①若a//M,b//M, 则a//b  ②若a//M, b⊥M,则b⊥a   ③若aM,bM,且c⊥a,c⊥b,则c⊥M   ④若a⊥M, a//N,则M⊥N,其中正确命题的个数为(   )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条直线,是两个平面,则下列4组条件中:①;②;③;④
能推得的条件有(      )组。
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则的位置关系是_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中:①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③垂直于同一条直线的两条直线平行;④垂直于同一平面的两条直线平行.其中正确的说法个数为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在空间中,下列命题正确的是
A.平面内的一条直线垂直与平面内的无数条直线,则
B.若直线与平面内的一条直线平行,则
C.若平面,且,则过内一点垂直的直线垂直于平面
D.若直线与平面内的无数条直线都垂直,则不能说一定有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在下列条件中,可判断平面与平面平行的是(  )
A.都垂直于平面
B.内存在不共线的三点到平面的距离相等
C.内两条直线,且
D.是两条异面直线,且

查看答案和解析>>

同步练习册答案